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Breakup of the Fermi Surface Near the Mott Transition in Low-Dimensional Systems
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We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a
generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical
hopping t‘f. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase
where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is
strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that
such pockets would look like “arcs™ in photoemission experiments.
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The formation of a pseudogap phase near the Mott
transition in strongly correlated electron systems is a
long-standing problem in solid-state physics. Since the
observation of a pseudogap in high-7,. superconductors
[1], the nature and origin of this phase lies at the core of
a heated debate. Several related issues, such as the possible
breakup of the Fermi surface (FS) into arcs or pockets [2,3]
and the concomitant appearance of “hot spots” in the
quasiparticle spectrum, have also attracted much attention
in recent years. The theoretical description of the Mott
transition in two spatial dimensions is particularly difficult
[4], however, and a consensus on the nature and properties
of the pseudogap has not yet emerged. The central question
concerns the way the FS is destroyed when entering the
Mott state, either at zero temperature as a function of some
control parameter, or with decreasing temperature from a
high-T metallic phase.

For solving these questions one has to resort to approxi-
mate or numerical approaches. Among those, the Dynamic
Mean Field Theory (DMFT) [5,6] has proven to be very
fruitful to tackle the question of Mott transitions and strong
correlations in high dimensional systems. However, since
the standard implementation of this method reduces the
problem to a single site, the momentum dependence of the
self-energy is lost, which makes it unable to describe FS
anisotropies. To overcome this limitation, various cluster-
DMFT schemes have been used [7-10]. One difficulty with
these approaches which, for small clusters, can affect
physical predictions, lies in a certain degree of arbitrariness
in converting the cluster results into physical quantities on
the lattice.

In addition to high-T,. superconductors, these questions
related to the approach of the Mott transition are directly
relevant to other systems in which interactions are deemed
to be important, such as the organic superconductors, made
of weakly coupled one-dimensional chains [11]. Such
systems exhibit a deconfinement transition between a
one-dimensional Mott insulator and a three-dimensional
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metal. For such systems, FS pockets were found when the
interchain coupling is treated within the RPA approxima-
tion [12]. The pockets form when the interchain bandwidth
exceeds the 1D Mott gap of the chains. However the RPA
approximation neglects the feedback of the interchain
hopping on the 1D Mott gap, and more generally on the
self-energy. To go beyond this approximation it is useful to
generalize the one-site DMFT to one-dimensional chains
embedded in a self-consistent bath [13,14]. This ch-DMFT
scheme was successfully applied to study the deconfine-
ment transition in quasi- 1D lattices, and is the ideal tool to
investigate the Mott transition in this type of systems [15—
17].

In the present Letter, we use this method to study a 2D
lattice of spinless fermions made of weakly coupled 1D
chains. Contrarily to the 1D Hubbard model, the 1D spin-
less model has a Mott transition for a finite value of the
interaction. Furthermore, the effects of the interaction are
stronger in the spinless case than in the spin-1 case, as
illustrated by the lower value of the Luttinger coefficient
which can be reached in the former. The spinless model can
also be viewed as a caricature of a spin—% model at quarter
filling with a very strong local repulsion. Using the ch-
DMFT method we show that FS pockets exist in this model
close to the metal-insulator transition. However, due to the
very strong anisotropy of the spectral weight along the
Fermi surface, these pockets would appear as Fermi arcs
in experiments. We note that similar effects have been
recently discussed using extensions of DMFT including
momentum dependence [18,19].

Our model has two parameters, ¢, and V, which control
the interchain hopping and the interaction H;, =
V> ,n.n,.; within the chains, respectively, relative to the
in-chain hopping ¢. In the 1D limit (¢; = 0) this model has
a phase transition from a Luttinger liquid at V <2t to a
Mott insulator at V > 2¢. Here we focus on the region V >
2t, and we investigate the destruction of the Mott insulator
with increasing ¢, . Within ch-DMFT the 2D problem is
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mapped onto an effective 1D problem described by the
action Ser = SY; + || B drH  with

B
ngf = —Zj;) deT’ci(T)gal(r — 7, 7= 1) (7).

ey

The inverse propagator G, in Eq. (1) plays the role of a
long-range, time-dependent hopping amplitude. It must be
determined from the requirement that the in-chain Green’s
function G calculated from Sy coincides with the
k| -summed Green’s function of the original 2D model,
Gk, w)=[w—§& —e; —2(k w)]™! [5,15]. This re-
quirement implies

Gy'lho)=0— &+ G (ko) - RIGKw)] (2

with k the in-chain momentum, &, = —2tcosk — w the
bare dispersion, and R(z) = sign[Re(z)]/1/z> + (2¢,)* re-
sulting from the integration over the transverse energy
e = —2t; cos(k, ). Equations (1) and (2) can be readily
derived from the assumption that the lattice self-energy
does not depend on transverse momentum k | , and is given
by the effective in-chain self-energy:

3k w) = Gy'l(k 0) — Gk o). 3)

3. (k, @) will be our main concern here. In order to evaluate
the self-energy we compute the space-time Green’s func-
tion G(r,7) = —<c,(7')c:)r (0)) by quantum Monte Carlo
(QMC) calculations on a discrete imaginary-time mesh
7¢ = £B/L, using the Hirsch-Fye algorithm [20]. From
the Fourier transform G(k, iw,) we construct a new propa-
gator G, according to Eq. (2), which is fed back into
Eq. (1) until self-consistency is achieved.

We consider a half-filled 32-site chain closed with anti-
periodic boundary conditions (BC). These BC were
adopted for two reasons: (i) in short 1D chains we observed
that the convergence of the QMC calculations toward
exact-diagonalization results is much faster with antiperi-
odic than with periodic BC; (ii) for a given system size, the
antiperiodic BC improve the resolution near k = /2,
which is an advantage for the investigation of the FS
properties. The shape of the FS is indeed controlled by
the real part of the self-energy through the equation

& — 2t cos(k;) = —ReZ(k, i0™), 4)

which must be solved at zero temperature near k = /2.
At finite temperature the FS looses its identity, although
sharp signatures may subsist in the zero-energy spectral
function A(k, @ = 0), which is accessible through photo-
emission experiments. We will first discuss the FS topol-
ogy and properties implied by Eq. (4) and our ch-DMFT
results for 2 (k, ), before addressing some issues related
to the experimental measurement of the FS.

For evaluating Eq. (4) one needs a procedure to continue
the ch-DMFT self-energy from the lowest Matsubara fre-
quency iwy = iwT downto w = i0* along the imaginary-

frequency axis. This is a delicate endeavor, which in gen-
eral requires some assumption about the analytical behav-
ior of 2 (k, w) near = 0. We performed the continuation
by fitting the self-energy to an analytical function. The
prominent feature in the Mott phase is the spectral gap
which can be crudely represented by a self-energy
Salk, w) = (A —1& + (A/2)?/(w + AEL), where A s
the gap and A accounts for the dispersion renormalization
due to exchange. A similar Ansatz was recently proposed
to describe high-T,. superconductors [21]. This simple
form is not sufficient to reproduce our QMC results, how-
ever, even in the pure Mott phase at 7, = 0. We obtained a
much better agreement with our data by taking into ac-
count residual interactions. Specifically, the self-energy to
which we fit the QMC results is 2(k, w) = 2A(k, w) +
Sk, ), where 3, contains all diagrams—evaluated
using the gapped propagator Gyk, w) =[w — & —
S A(k, @)]"! and an effective interaction V*—up to second
order in perturbation theory. A comparison of the QMC
data and model self-energies is displayed in Fig. 1. One can
see that the model has enough freedom to fit the QMC
results in great detail, especially in the low-frequency
region we are mostly interested in. It turns out that the
model fits the QMC data in the whole range of temperature
and 7, values which we have investigated. We can there-
fore use this fit to track the closing of the Mott gap and the
formation of the Fermi surface as ¢ is increased. A few
additional illustrations of the fit performance can be seen in
Fig. 2.

In Fig. 2 we display our results for —Re3(k, iwg) at V =
2.5t and different values of 7, together with the fit results
evaluated at iw( and i0". The main trend with increasing
t; can be seen on the raw numerical data. For small 7, the
self-energy has a tendency to diverge near kp = 7/2

FIG. 1 (color online).

Left panels:
imaginary-frequency axis for k between 0 and 7/2 at V = 4,
t; = 0.5, and T = 0.04. The dots show the numerical data and
the lines are guides to the eye. The number of imaginary-time
slices was L = 60. Right panels: Fit of the numerical data to a
trial self-energy (see text). All energies are in units of 7.
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FIG. 2 (color online). (a)—(c) Real part of the ch-DMFT self-
energy as a function of k at the lowest Matsubara frequency for
V =25, T = 0.1, and increasing ¢, (red points). The red and
blue lines show the fit of the data to the function X, + X, at
o =iwy, T=0.1, and at @ = i0", T = 0, respectively. The
shaded areas show the domain covered by the free dispersion
&, — 2t cos(k ) in Eq. (4). The Fermi surfaces corresponding
to (b) and (c¢) are shown in (b’) and (c¢’). The dotted lines indicate
the noninteracting Fermi surfaces, and the + and — show the
sign of ReG(k, 0).

[Fig. 2(a)]. This behavior is most clearly seen at large V
and low T (see Fig. 1). The singularity of ReX,(k, 0) results
from the presence of a gap in the zero-temperature spectral
function at k [22], and is well captured by the model self-
energy evaluated at 7 = O (blue line) [23]. At finite fre-
quency and/or temperature the singularity is regularized as
shown by the red line. With increasing 7, the drop of the
QMC self-energy across kr diminishes [Fig. 2(b)].
Correspondingly, the fitted spectral gap A decreases and
eventually vanishes at t‘f ~ 0.5¢, together with the disap-
pearance of the singularity in the self-energy [Fig. 2(c)].

Figure 2 provides the graphical solution of Eq. (4), and
illustrates the formation of the Fermi-surface pockets in
this model. When ¢, is small, the transverse dispersion is
not sufficient to overcome the gap in the self-energy, and
the system remains insulating. At high 7, , on the contrary,
there is no gap in the self-energy and Eq. (4) has a solution
for all k| , leading to a continuous Fermi surface. The latter
has practically the same shape as the noninteracting FS, but
is strongly renormalized to an effective interchain hopping
', =~ 0.41z). In the intermediate regime 19! <1, <1,
there is a finite range of k, values where Eq. (4) admits
two solutions, leading to the breakup of the FS into pockets
[Fig. 2(b) and 2(b")].

According to Luttinger’s theorem, the area of the
Brillouin zone where ReG(k, 0) > 0 equals the electron

density and is thus conserved [12,24]. In the Mott phase
ReG(k, 0) changes sign at k = *177/2 due to the divergence
of 2(k, 0) [Fig. 2(a)], and is positive in the domain |k| <
/2, leading to a density n = 1/2 as expected. Because
the singularity of 3(*/2, 0) subsists as long as A > 0,
the line of zeros of ReG(k, 0) at k = *77/2 is still present
when FS pockets develop, as indicated in Fig. 2(b’). On the
other hand, owing to particle-hole symmetry the electron
and hole pockets have identical volumes, so that Luttinger
theorem is obeyed in our results.

The mechanisms of FS pockets formation in the present
study and in the RPA approach of Ref. [12] are similar,
although there is one important difference. In RPA the
spectral gap keeps its 1D value at all 7, : pockets form
when ¢, > til ~ Ap, and they never merge into a con-
nected Fermi surface as #; continues increasing. Within
ch-DMFT, in contrast, the closing of the Mott gap with
increasing ¢ is correctly captured; as a result the pockets
form at lower ¢; values—thus they are very thin—and
eventually they disappear at tcf where A = 0.

The quasiparticle properties are strongly anisotropic
along the FS pockets. It is already clear from Fig. 2(b)
that the spectral weight is much smaller on the vertical
parts of the pockets closest to k = 77/2, due to the diverg-
ing self-energy in this region; as a result the pockets would
most likely look like ““arcs’ in photoemission experiments
(see below). Figure 3(a) shows the evolution of the quasi-
particle residue along the Fermi surface. The residue was
evaluated as Z = [1 — dRe2(k, w)/dw|,,—¢] "', using the
model self-energy and an interpolation of the parameters
fitted to the ch-DMFT data in the whole range of ¢, values
[Fig. 3(b)]. In the intermediate phase the residue on the
vertical segments of the pockets decreases from Z ~ 0.15
to Z ~ 0 with increasing #;. On the ‘“cold” side of the
pockets the behavior is inverted, and the residue increases
from Z ~ 0.35 to Z ~ 0.5. Strikingly, a hot spot around
k = (/2, w/2) subsists at t; > r?. Here again the evo-
lution of Z with ¢, is different at the cold and hot spots:
while Z steadily approaches 1 in the cold region, it remains
close to Z ~ 0.4 at the hot spots.

.
02 04 06 08
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FIG. 3 (color online). (a) Evolution of the quasiparticle residue
Z along the Fermi surface for different interchain couplings ¢, .
When FS pockets are present there are two values of Z for each
k, , the lowest value corresponding to the region of the pocket
closest to k = 7r/2. (b) Parameters of the model self-energy
determined from fits to the ch-DMFT numerical data.
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FIG. 4 (color online). Comparison of the zero-energy spectral
function A(k,0) at T = 0 with the expected ARPES intensity
I(k) calculated assuming a k-space resolution of 0.047, an
energy resolution 0.004z, and an energy integration window
OE = 0.01z. The self-energy parameters are taken from
Fig. 3(b) for t; = 0.42 (a) and t; = 0.46 (b).

It is worth stressing the role of residual interactions in
the results of Figs. 2 and 3(a). At the qualitative level, the
self-energy 2, (k, @) (with A = 1) is sufficient to under-
stand the formation of FS pockets with anisotropic resi-
dues. Using X = 3, in Eq. (4) one indeed finds that
pockets form for 0 < A < 2¢,, and that the residue varies
on such pockets. However the pockets obtained in this way
are considerably wider than in Fig. 2, and the residue in the
cold regions is Z ~ 1 when A approaches zero instead of
Z ~ 0.5 as in Fig. 3. Thus the residual interactions are
important for the quantitative understanding of the FS
properties. Meanwhile, the fact that our model self-energy
fits the ch-DMFT data at t; > 1> with V* ~ V [Fig. 3(b)]
indicates that second-order perturbation theory is a good
approximation in this region, as expected in a Fermi liquid.

We now turn to the question of the experimental obser-
vation of FS pockets. There are several limitations which
could make the observation of such pockets by angle-
resolved photoemission spectroscopy (ARPES) challeng-
ing, such as the finite energy and momentum resolutions,
the finite temperature at which experiments are performed,
as well as the need to integrate the ARPES intensity on
some energy window in order to improve the signal to
noise ratio. Ideally, ARPES would measure the occupied
spectrum A(k, w)f(w). In practice, however, due to the
above limitations, the measured intensity at the Fermi
energy would be I(k) = [*;, dw [dedqA(q, €)f(e)g(k —
q,  — €), where 8E defines the energy integration win-
dow and g is some function describing the instrument
resolution. We have calculated /(k) using a Gaussian for
g. The comparison depicted in Fig. 4 of the T = 0 Fermi
surface with the expected ARPES intensity clearly shows
that the closing segments of the pockets near k = 7/2
would very likely be hidden in the ARPES signal. The
broad aspect of I(k) as compared to A(k, 0) is not a con-
sequence of finite temperature, but of (i) the finite k-space
resolution combined with the fact that the pockets are very
thin and (ii) the large difference in quasiparticle weight on
the two sides of the pockets, which is obvious in A(k, 0)

and consistent with the residues shown in Fig. 3. Similar FS
anisotropies were recently found in cluster-DMFT studies
of the 2D Hubbard model [18], suggesting that such effects
are generic to systems close to a Mott transition, and could
possibly explain the ARPES observation of FS arcs in
high-T, cuprate superconductors.
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