Role of Au⁺ in Supporting and Activating Au₇ on TiO₂(110)

J.G. Wang and B. Hammer

Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, University of Aarhus,

DK 8000 Aarhus C, Denmark

(Received 14 June 2006; published 29 September 2006)

The adhesion properties and catalytic activity of rutile $TiO_2(110)$ -supported Au₇ nanoclusters in different oxidation states are investigated by means of density functional theory. The calculations cover both surface science conditions of reduced TiO_2 and real catalyst conditions of oxidized (alkaline) TiO_2 supports. Large adhesion energies of Au₇ are found only when modeling real catalysts where the cluster becomes cationic with Au⁺ ions in Au-O or Au-OH bonds. The full catalytic cycle for oxidation of CO by O_2 over Au₇ on alkaline $TiO_2(110)$ is calculated and found to involve only small activation barriers. In the presence of the CO reductant, the Au⁺ sites are capable of cycling between bonding of atomic and molecular oxygen. We confirm our findings by comparison of calculated and experimental infrared stretch frequency data for adsorbed CO.

DOI: 10.1103/PhysRevLett.97.136107

Oxide-supported gold nanoparticles have been shown to catalyze a range of reactions, including CO oxidation [1], propylene epoxidation [2], and the water gas shift reaction [3]. The chemistry of the gold nanoparticles is thus in stark contrast to that of bulk gold surfaces, since these are considered catalytically inactive [4]. Using the surface science approach, a number of mechanisms have been proposed explaining the high activity of the gold nanoparticles. These include quantum size effects of two-layer Au islands [5], negative charging of the Au clusters [6,7], abundance of low Au-Au coordination sites [8], and the presence of Au-support periphery sites [9-11]. In all these works, an anionic nature of the Au particles was inferred. In the present work, we adapt a more realistic view of what the real gold-support interface looks like after preparation and under reaction conditions. We propose that Au nanoparticles are slightly oxidized having cationic Au⁺ sites. We identify Au⁺-O adhesion bonds of a mixed covalent and ionic nature. Similar Au⁺-O₂ bonds at the Au-support periphery sites [9-11] are suggested to be responsible for the catalytic activity of Au nanoparticles in oxidation reactions.

Two very efficient preparation techniques for supported Au nanoparticle catalysts are coprecipitation and deposition-precipitation. In the former, both support and gold precursors are extracted from solution; in the latter, a preformed support is employed for the precipitation of the gold precursor. The precipitation is most efficient for a pHvalue of 9 [12], and it is believed that the gold precursors are hydroxyls [13]. Pretreatment in the form of calcination (heating in air) at moderate temperatures is often employed to transform the gold precursors into catalytically active metallic gold attached to crystalline metal oxide supports [14,15]. The precise state of the gold particles after the calcination and under reaction conditions is subject to debate. Contrary to most surface science studies, Bond and Thompson [16] and others [17,18] have suggested that the Au particles are oxidized with Au^+ or Au^{3+} sites PACS numbers: 68.47.Jn, 68.43.Fg, 82.65.+r

at the particle-support interface being responsible for the catalytic activity.

Comparing the activity of Au nanoparticles on different supports, a clear trend is found: Very acidic materials (for example, Al_2O_3 -SiO₂ and WO₃) show poor activity, less acidic (SiO₂, Al_2O_3 , and TiO₂) or slightly basic materials (Fe₂O₃, Co₃O₄, and NiO) show high activity, while strongly alkaline materials [Be(OH)₂ and Mg(OH)₂] exhibit the highest activity [13]. Considering that the more basic the support, the more oxidized the supported Au particles are expected to be, this trend calls for further consideration of cationic Au particles.

To model gold nanoparticles under different oxidation conditions, we have performed density functional theory (DFT) calculations [19] of gold clusters on supports in various oxidation states. As the support, we choose rutile TiO₂(110), which has proven very efficient [13,20]. For the Au nanoparticles, we select Au₇, which is the smallest Au cluster on rutile TiO₂(110) with a measurable reaction rate for CO combustion [21]. The structure of the TiO₂(110) surface is illustrated in Fig. 1(a). The TiO₂(110) has protruding oxygen atoms (O_{br}) that bridge Ti atoms underneath (not shown). These Ti atoms coordinate to six oxygen atoms as any other Ti in bulk TiO₂. The surface further has coordinatively unsaturated Ti atoms (Ti_{5c}) that coordinate only to five oxygen atoms.

In the calculations, the different oxidation states considered for the TiO₂(110) range all the way from highly reduced to highly oxidized. The reduced surfaces contain either bridging oxygen vacancies (O_{vac}) or bridging hydroxyl groups (OH_{br}). To avoid confusion with other hydroxyl groups, we refer to these species as capping H atoms (H_{cap}). The oxidized states of the surface are modeled by alkaline TiO₂(110) having terminal OH groups (OH_{tr}) atop the Ti_{5c} in the troughs. The OH_{tr} are allowed to dissociate forming terminal O (O_{tr}) on the Ti_{5c} sites and capping H on the O_{br} sites (i.e., OH_{br} groups). We envisage the hydroxyls as originating from the Au precursors. The

FIG. 1 (color online). (a) Schematic of the rutile $TiO_2(110)$ surface. Most stable structures of Au_7 on (b) stoichiometric TiO_2 and alkaline TiO_2 with (c) intact or (d) dissociated OH_{tr} .

calcination pretreatment clearly removes hydroxyls from the catalyst, but only to the point that is thermodynamically preferred at the elevated temperature [22]. The possible influence of a humid environment is investigated by inclusion in some cases of an adsorbed water molecule (H_2O_{tr}) on the Ti_{5c} sites.

The adhesion potential energies for the calculated most stable 2D or 3D Au₇ clusters supported on TiO₂(110) are given in Table I, and some of the structures are shown in Figs. 1(b)–1(d). More structures are shown in Ref. [23], Figs. S1–S6. On TiO₂(110) in most oxidation states, we find the Au₇ to prefer a 2D structure as in the gas phase [24]. The binding of the 2D clusters is, however, weak on the reduced TiO₂ that has a vacancy or an H_{cap}. On stoichiometric TiO₂(110), the 2D cluster [Fig. 1(b)] shows increased stability ($E_{adh} = -1.18 \text{ eV}$) and a 3D structure becomes slightly stable (-0.17 eV) against desorption as a 2D cluster. The weak binding is consistent with previous

TABLE I. Adhesion potential energy E_{adh} of the most stable 2D and 3D Au₇ cluster on different TiO₂(110) surfaces.

TiO ₂ (110)	Au ₇ (2D)	Au ₇ (3D)
Vacancy	-0.52	0.27
H _{cap}	-0.87	0.10
Stoichiometric	-1.18	-0.17
OH _{tr}	-2.34	-2.07
$OH_{tr} + H_2O_{tr}$	-2.38	-2.11
$O_{tr} + H_{cap}$	-2.28	-2.42
$O_{tr} + H_{cap} + H_2O_{tr}$	-2.38	-2.40

findings with DFT of small adhesion energies of extended gold structures on stoichiometric $TiO_2(110)$ [11,25].

The alkaline TiO₂(110) surfaces show markedly larger stability of the Au clusters. In this case, the 2D cluster is bonded by about 2.3 eV [Fig. 1(c)], and, depending on whether OH_{tr} or O_{tr} + H_{cap} species are present, the binding of 3D clusters [Fig. 1(d)] amounts to 2.1 and 2.4 eV. For these situations, we also included a water molecule in some of the calculations. However, no great effect of an H₂O_{tr} coadsorbate is identified (cf. Table I).

The bonding mechanism and charge state of two of the supported Au₇ clusters is analyzed in Fig. 2. First, the charge density change induced upon adsorption of 2D (or 3D) Au₇ and OH_{tr} (or $O_{tr} + H_{cap}$),

$$\Delta \rho(\mathbf{r}) = \rho_{\mathrm{Au/TiO2-OH_{tr}}}(\mathbf{r}) - \rho_{\mathrm{Au}}(\mathbf{r}) - \rho_{\mathrm{TiO2}}(\mathbf{r}) - \rho_{\mathrm{OH}}(\mathbf{r}),$$

is shown in Figs. 2(a) and 2(b), from which the positive charging state (blue isosurfaces) of particularly 1st layer Au atoms in the Au₇ on alkaline $TiO_2(110)$ is obvious. Next, the projected density of states (pDOS) on some of the Au(5d)-O_{tr}(2p) and Au(5d)-O_{br}(2p) σ bonds of the 3D Au₇ cluster on TiO₂(110) with $O_{tr} + H_{cap}$ [Figs. 1(d) and 2(b)] are shown in Fig. 2(c). These plots are suggestive of a mixed covalent and ionic Au-O interaction, which is confirmed by the plotting of some individual Kohn-Sham orbitals, ψ_1 , ψ_2 , and ψ_3 , in Fig. 2(d). Orbitals ψ_1 and ψ_3 are clearly identifiable as σ bonds between the Au and the O_{tr} and O_{br} atoms, respectively, while orbital ψ_2 is of an antibonding nature, mainly with the weight on the Au sites. Since ψ_2 has an energy above the Fermi level [cf. Fig. 2(c)], it is depleted, whereby the Au becomes cationic as seen in the charge density difference plot [Fig. 2(b)]. The excess electron charge ends up in Otr and Obr dangling bonds [Fig. 2(b)] or in Au-O bonding states of mainly oxygen character (e.g., ψ_1 or ψ_3), whereby the O atoms become negatively charged. The present analysis allows for a quantitative explanation for the stronger adhesion of Au₇ on the alkaline surface; the total Au(5d) population is lowered by $0.49e^-$ on alkaline TiO₂ but only by $0.23-0.26e^{-}$ on stoichiometric or reduced TiO₂, meaning that, on the alkaline TiO₂, the antibonding Au-O bonds are less filled and, hence, the adhesion enhanced.

We note that cationic Au^+ species have been detected by a range of experimental techniques for Au clusters supported on various supports (Fe₂O₃, TiO₂, and Al₂O₃) [15,16,26].

We now turn to investigate if the strongly bound Au₇ cluster on the *alkaline* TiO₂ is catalytically active. In Fig. 3, the calculated catalytic cycle of $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$ is shown for the 3D Au₇ cluster on the TiO₂(110)-O_{tr}-H_{cap} surface. Since every reaction step is exothermic by at least 0.5 eV and only minute energy barriers (0.16 and 0.01 eV) are calculated for the CO₂ formation reactions, the calculations do predict that the cationic Au₇ can be highly active on an alkaline TiO₂(110) support.

FIG. 2 (color). (a),(b) Induced charge rearrangements upon adsorption of Au₇ and OH_{tr} (or O_{tr} + H_{cap}) for the configurations shown in Figs. 1(c) and 1(d). Blue (red) isosurfaces indicate depletion (addition) of $0.05e^{-}/Å^{3}$. Yellow spheres and dashed circles mark the Au positions. (c) Electronic DOS projected onto Au(5d_z²) (gray) and O(2p_z) (orange) orbitals with the *z* axis parallel to the Au_{α}-O_{tr} and Au_{β}-O_{br} bonds, respectively. (d) Isosurfaces of the amplitude of selected Kohn-Sham orbitals, ψ_{1-3} . Covalent bonds are hatched in green.

The adsorption configurations and transition states along the reaction path are included in Fig. 3. The O₂ is seen to bind at the Au-TiO₂ interface in agreement with previous reports on reduced supports [7,9–11] and the CO binds to 2nd layer Au⁰ sites. The O₂ further depletes the Au₇(5*d*) states by $0.22e^-$ (to a total value of $0.71e^-$) suggesting a bonding mechanism similar to that for O_{tr} discussed in Fig. 2. After the first CO₂ formation, one oxygen atom from the O₂ is left on the catalyst particle and forms a Au-O bond much similar to the one formed by the original O_{tr}. The presence of the second O_{tr} is causing a depletion of the Au₇(5*d*) states by $0.33e^-$ (i.e., totally by $0.82e^-$) exceeding the depletion from 0.26 to $0.49e^-$ originating from the first O_{tr}. When the Au₇ is bonded in this way by *two* O_{tr},

FIG. 3 (color online). Catalytic cycle for CO oxidation at Au_7 supported on alkaline $TiO_2(110)$ with $O_{tr} + H_{cap}$.

either of them may easily be removed by the 2nd CO, thereby forming CO_2 and closing the cycle. We note that, in experiments with an isotope labeled O₂, it might therefore well appear that an "apparent" lattice O (our O_{tr}) is involved in the reaction [14]. We also note that a 3rd CO is unlikely to fully reduce the Au_7 by removing the last O_{tr} . According to Table I, the 3D Au₇ is 2.5 eV less stable without this stabilizing Otr, but adsorption of CO and formation of CO₂ in a 2nd step releases only $1.01 + 0.96 \simeq$ 2.0 eV. As an important finding in Fig. 3, the Au^+ ions at the gold-oxide interface show a remarkable ability to bind both O_2 and atomic O, so that all steps in the CO oxidation become exothermic. More reactive metals than gold would most likely bind the atomic O too strongly, meaning that a catalytic cycle in which the O₂ and O are sequentially sharing the same site would become inhibited.

The catalytic cycle of Fig. 3 shows that indeed the Au₇ cluster under alkaline conditions is expected to be highly active. We cannot make a similar statement for Au₇ on reduced or stoichiometric surfaces, since the 2D Au₇ structure prohibits efficient O₂ adsorption. In fact, on the stoichiometric support, we do not identify a stable binding site for the O_2 on the 2D Au₇ cluster [Fig. 1(b)]. If a 3D Au₇ structure is enforced on the stoichiometric $TiO_2(110)$, we do, however, find the O_2 to bind with 0.40 eV, which is comparable to the 0.52 eV O₂ binding on 3D Au₇ at alkaline TiO₂(110). In calculations where H_2O_{tr} is included to model the role of a wet environment, we further identify improved O_2 binding (0.61 eV) and favorable energetics for the entire catalytic cycle (see Ref. [23], Fig. S7). This agrees well with reports on a promoting effect of water on the CO oxidation reaction [27].

Finally, we have calculated the CO stretch frequencies for a number of CO adsorption configurations (Fig. 4). The calculated frequencies fall in two groups: CO's that bind to Au^0 sites [Figs. 4(a)-4(c)] have frequencies in the range

FIG. 4 (color online). Calculated vibrational stretch frequencies (in cm⁻¹) for CO adsorbed on (a),(b) 2D and 3D Au₇ clusters on stoichiometric TiO₂, (c) Au₇ having one Au-O_{tr} bond, (d) Au₇ having two Au-O_{tr} bonds, and (e),(f) Au₇ having one Au-O_{tr} and one Au-O₂ bond without or with coadsorbed H₂O_{tr}.

2089–2112 cm⁻¹, while CO's that bind to Au atoms that are *neighboring* Au⁺ atoms in Au-O or Au-O₂ bonds [Figs. 4(d)–4(f)] have frequencies in the range 2164–2174 cm⁻¹. These results fully corroborate the infrared frequencies found in a number of experimental studies [14,28–30]. In these works, typical stretch frequencies of CO on a supported gold catalyst were found in the range of 2101–2110 and 2168–2176 cm⁻¹ and were attributed CO bound to Au⁰ and Au⁺ sites, respectively.

In the present work, some effort was spent comparing supported 2D and 3D clusters. We note, however, that for larger clusters, the 2D to 3D transition is not an issue since the clusters already prefer the 3D shape in the gas phase [24].

In summary, we have used density functional theory calculations to identify that strong Au-oxide support adhesion is obtained on oxidized (alkaline) $\text{TiO}_2(110)$ surfaces but not on reduced or stoichiometric $\text{TiO}_2(110)$. The Au clusters become cationic as a result of the formation of the Au-O adhesion bonds. The investigated cationic Au₇ cluster is capable of binding both molecular and atomic oxygen at perimeter sites next to the support and CO further away from the support, and the adsorbates are found to react with small energy barriers.

We acknowledge discussions with S. Wendt, D. Matthey, and F. Besenbacher and support from the Danish Research Councils and Dansk Center for Scientific Computing.

- [1] M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. **115**, 301 (1989).
- [2] T. Hayashi, K. Tanaka, and M. Haruta, J. Catal. 178, 566 (1998).
- [3] F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, and T. Tabakova, J. Catal. 188, 176 (1999).
- [4] B. Hammer and J. K. Nørskov, Nature (London) 376, 238 (1995).
- [5] M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
- [6] B. Yoon et al., Science 307, 403 (2005).

- [7] I.N. Remediakis, N. Lopez, and J.K. Nørskov, Angew. Chem., Int. Ed. 44, 1824 (2005).
- [8] M. Mavrikakis et al., Catal. Lett. 64, 101 (2000).
- [9] L. M. Molina et al., Phys. Rev. Lett. 90, 206102 (2003).
- [10] Z. P. Liu et al., Phys. Rev. Lett. 91, 266102 (2003).
- [11] L. M. Molina et al., J. Chem. Phys. 120, 7673 (2004).
- [12] F. Moreau, G. C. Bond, and A. O. Taylor, J. Catal. 231, 105 (2005).
- [13] M. Haruta, J. New Mater. Electrochem. Syst. 7, 163 (2004).
- [14] F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta, J. Catal. 202, 256 (2001).
- [15] N.A. Hodge *et al.*, Catal Today **72**, 133 (2002).
- [16] G.C. Bond and D.T. Thompson, Gold Bulletin (London) 33, 41 (2000).
- [17] C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang, and H. H. Kung, Appl. Catal., A 232, 159 (2002).
- [18] J. Guzman and B. C. Gates, J. Phys. Chem. B 106, 7659 (2002).
- [19] The DACAPO package (http://www.camp.dtu.dk/campos) with a plane-wave basis set (Ecut = 25 Ry) and ultrasoft pseudopotentials was used. The revised Perdew-Burke-Ernzerhof functional [31] was employed for exchangecorrelation effects. A (4×2) TiO₂(110) surface unit cell comprising slabs of three trilayers (the first of which being fully relaxed) at the theoretically derived lattice constants (a = 4.69 Å, c = 2.99 Å, and u = 0.305) was adopted. The Au₇ adhesion potential energy is calculated as: $E_{adh} = E(Au_7 + TiO_2) - E(Au_7) - E(TiO_2)$, where $E(Au_7 + TiO_2)$, $E(Au_7)$, and $E(TiO_2)$ are the total energies of the combined systems, the most stable gas phase Au₇ 2D cluster, and the TiO₂ surface in a given oxidation state, respectively. Transition states are located by constrained relaxation. The calculated vibrational frequencies have been scaled by 0.9821, which is the ratio between the measured (2143 cm⁻¹) and calculated (2182 cm⁻¹) stretch frequencies for gas phase CO.
- [20] T. V. W. Janssens, A. Carlsson, A. Puig-Molina, and B. S. Clausen, J. Catal. 240, 108 (2006).
- [21] S. Lee, C. Fan, T. Wu, and S. L. Anderson, J. Am. Chem. Soc. 126, 5682 (2004).
- [22] A. S. Barnard, P. Zapol, and L. A. Curtiss, Surf. Sci. 582, 173 (2005).
- [23] See EPAPS Document No. E-PRLTAO-97-037640 for additional illustrations of configurations considered [adds to the configurations in Figs. 1(b)-1(d) in the Letter]. For more information on EPAPS, see http:// www.aip.org/pubservs/epaps.html.
- [24] L. Xiao and L.C. Wang, Chem. Phys. Lett. 392, 452 (2004).
- [25] N. Lopez and J. K. Norskov, Surf. Sci. 515, 175 (2002).
- [26] L. Fu et al., J. Phys. Chem. B 109, 3704 (2005).
- [27] M. M. Schubert, A. Venugopal, M. J. Kahlich, V. Plzak, and R. J. Behm, J. Catal. 222, 32 (2004).
- [28] B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, and R. J. Behm, J. Catal. **224**, 449 (2004).
- [29] H. Huber, D. McIntosh, and G. A. Ozin, Inorg. Chem. 16, 975 (1977).
- [30] T. Venkov, K. Fajerwerg, L. Delannoy, H. Klimev, K. Hadjiivanov, and C. Louis, Appl. Catal., A 301, 106 (2006).
- [31] B. Hammer et al., Phys. Rev. B 59, 7413 (1999).