
Dynamics of a Deformable Body in a Fast Flowing Soap Film

Sunghwan Jung,1 Kathleen Mareck,1 Michael Shelley,1 and Jun Zhang2,1

1Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, New York 10012, USA

2Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA
(Received 29 May 2006; published 28 September 2006)

We study the behavior of an elastic loop embedded in a flowing soap film. This deformable loop is
wetted into the film and is held fixed at a single point against the oncoming flow. We interpret this system
as a two-dimensional flexible body interacting in a two-dimensional flow. This coupled fluid-structure
system shows bistability, with both stationary and oscillatory states. In its stationary state, the loop
remains essentially motionless and its wake is a von Kármán vortex street. In its oscillatory state, the loop
sheds two vortex dipoles, or more complicated vortical structures, within each oscillation period. We find
that the oscillation frequency of the loop is linearly proportional to the flow velocity, and that the
measured Strouhal numbers can be separated based on wake structure.
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The wake flow behind a rigid obstacle is a central object
of study in fluid mechanics. When the oncoming flow
velocity exceeds a threshold, vortices are shed behind the
obstacle [1]. A typical wake is composed of successive
eddies of alternating sign—the ‘‘von Kármán vortex
street’’—and is observed over a wide range of flow veloc-
ities and body shapes [2,3]. The frequency of vortex shed-
ding (f) is determined by the flow velocity (V) and the
object size (d), whose relation is captured by the near
constancy of the Strouhal number, St � df=V [3].

The dynamics of a rigid object which moves freely in the
direction perpendicular to the flow is of interest in many
industrial and biological applications [4–8]. Lateral mo-
tion of an object can be induced by interaction with the
flow and is often called vortex-induced vibration (VIV). At
low flow velocities, the body starts to oscillate sideways
with a small amplitude (less than 0.4 times body diameter).
Its associated wake structure is again a von Kármán vortex
street. However, further increase of flow velocity causes
the obstacle to oscillate in phase with the vortex shedding,
and as a result, a series of dipoles are shed [7,8].

Settling bodies or rising bubbles, where the balance of
gravitational and drag forces set the velocity, also exhibit
transitions as they interact with their wakes. For example, a
slowly settling sedimenting sphere falls straight down-
wards [9] but above a certain sedimentation velocity, the
sphere’s motion becomes periodic and its trajectory a spiral
or zigzag [10]. A deformable object, such as a droplet or
bubble, can behave similarly even as its shape now changes
[11,12].

Finally, studies have shown the instability (and bista-
bility) of slender deformable bodies to lateral oscillations
in quasi-2D soap film flows [13], and of heavy deformable
sheets to lateral oscillations in fast 3D flows [14–17]. In
these cases, the system corresponds to the flapping of a flag
in a stiff breeze.

Flowing soap film provides a practical template upon
which to study the dynamics of a nearly 2D flow [18,19].
The experimental setup has been introduced earlier
[13,18–20]. In this work, we introduce a deformable
closed body into a fast soap film flow. Two thin nylon
wires (0.3 mm in diameter) separate at a nozzle (0.5 mm
inner diameter) attached to the bottom of a reservoir. The
reservoir contains soapy water maintained at a fixed pres-
sure head, thus fixing the flux. A stopcock regulates the
flow rate through the nozzle. The nylon wires extend
downwards to a collection box 2.4 m below. Driven by
gravity, the soap film flows downwards. Owing to air drag,
a terminal velocity is reached approximately 60 cm below
the nozzle with a velocity profile near the center close to
being uniform (velocity differences are within 20% of the
mean, over 60% of the span about the midline). From
optical interference patterns, the film thickness is found
to vary smoothly across the film by about 15% of its
average thickness.

We use a thin rubber loop (0.2 mm thick) as the deform-
able structure. The loop wets into the soap film and is
supported from its inner side against the flow. The loop is
much thicker than the soap film (� 3 �m) and we do not
typically observe leakage across the loop. Six loops of
different circumferences (5–7.5 cm) are used. We find
that for regimes studied here, the loop appears to undergo
only bending deformations, and not stretching or compres-
sion, as its length shows no measurable increase or
decrease. Currently, we do not understand what balance
of effects sets the enclosed area of the loop, which is an
important constraint on the possible dynamics. However,
we do find that, once experimental conditions are fixed,
and the loop is in a fixed state of dynamics, the enclosed
area changes very little in time (e.g.�5% for a 5 cm loop).
However, between different states or conditions, the en-
closed area can vary by factors of two or three.
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A laser Doppler velocimeter (LDV; Model LDP-100,
TSI Inc.) is used to record the upstream velocity V.
Micron-sized particles (TiO2) are seeded into the flow for
LDV measurements. Flow structures are visualized using
interference patterns from monochromatic illumination
(low-pressure sodium lamps operating at wavelength
585 nm). The movies of the wake flow together with the
loop are recorded using a high-speed camera at
1000 frames per second.

The interaction between the loop and the flow is quite
complicated. In our experiments, we observe bistable
states, one stationary and another oscillatory [see
Fig. 1(a) and 1(b)], that coexist over a range of flow
velocities. At least in the conditions considered here, we
do not observe spontaneous transitions between these two
states. However, a transition from the stationary to the
oscillatory state can be induced by externally perturbing
the loop, or by abruptly changing the flow velocity.

In the stationary state, the loop behaves as a rigid hoop
and has a teardrop shape with higher curvature on the top
than on the sides [Fig. 1(a)]. A characteristic length scale
(D) of the loop, its width in the film, is 1 cm. The flow

velocity (V) varies from 1.5 to 2:5 m=s and the kinematic
viscosity (�) of soap film is approximately 0:04 cm2=s.
The frequency of vortex shedding (fs) varies from 20 to
50 Hz. Based on these characteristic numbers, we estimate
the Reynolds number (Re) and Strouhal number (Sts) for
the system to be

 Re �
VD
�
� 5000; Sts �

Dfs
V
� 0:2; (1)

where the subscript s stands for vortex shedding, since the
Strouhal number is calculated based on the vortical struc-
ture of the wake. Figure 1(a) shows the deforming body
and its vortical wake using a 5 cm loop and flow velocity of
2:2 m=s. As can be seen, vortices of alternating sign are
successively produced.

In the coexisting oscillatory state, shown in Fig. 1(b) at
the same parameters as above, the loop now oscillates
periodically in the horizontal direction, and the vortical
wake behind it is quite different. For low flow velocity, two
dipole pairs are shed during each oscillation period. Such a
wake structure is also observed behind oscillating cylin-
ders and is referred to as the 2P mode [8,21]. For both of
these states, unsteady time-dependent wakes are shed be-
hind the loop. This bistability is different from that ob-
served at the onset of time-dependent vortex shedding from
a cylinder fixed in a soap film flow [22].

Figure 2(a) shows both the position of the loop at several
time points during one period of oscillation, and the path
taken by its centroid. During the oscillation, the loop
continuously changes its shape, and its centroid moves
along a figure-eight trajectory [Fig. 2(a)]. This figure-eight
shape is due to the fact that the frequency of oscillation in

FIG. 1. Flow structures behind a 5 cm loop at 2:2 m=s flow
velocity. The coupled fluid-structure system shows bistability:
(a) the stationary state; the loop remains essentially motionless
and its wake is a von Kármán vortex street. The loop is deformed
by the flow into a teardrop shape. (b) The oscillatory state; the
loop sheds two vortex dipoles within each oscillation period.

FIG. 2. (a) At 2:2 m=s flow velocity, eight snapshots of a 5 cm
loop and its centroid are shown. The oscillation period of the
oscillating loop is 52 ms. The snapshots of the flexible loop are
presented as solid loops at 6 ms intervals and the trajectory of the
centroid of the loop with 2 ms intervals. The loops are sequen-
tially numbered. (b) Wake structure when the loop centroid is at
the far left. The loop starts to shed a counter-clockwise vortex.
The wake structure is schematically shown in (c).
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the streamwise direction is twice that in the transverse
direction. This has been observed in the motions of a
flapping flag [13] and VIV systems [5,23]. Also, the loop
oscillates in phase with that vortex shedding [Fig. 2(b) and
2(c)]. When the loop is at far right (or left), a clockwise
turning (or counter-clockwise) vortex is shed.

By using loops of several different lengths, we find a
linear relation between the oscillation frequency of the
loop (floop) and a rescaled velocity V

����

�
p
=a

����

L
p

(see
Fig. 3), where � is the film thickness, a the thickness of
the loop, and L the loop length. Our results from loops of
different lengths and differing flow velocities all collapse
onto a single line with slope of about 0.27. The offset of this
affine relation suggests a bifurcation to oscillation at a
finite flow velocity; linear extrapolation to floop � 0 sug-
gests a critical rescaled velocity of about 20, which is
unfortunately below the reach of this experiment.

To better understand the relation between oscillation
frequency and flow velocity, we propose a simple model
for the oscillations of an elongated loop with longitudinal
length Ll driven by a ‘‘lift force’’ in the direction perpen-
dicular to the stream. The lift force (F) is taken as propor-
tional to �V2Ll�, where � is the density of fluid, V the fluid
velocity. Hence, F � �1=2�CL�V

2Ll�, where CL is a lift
coefficient. Typically, Ll is proportional to the loop cir-
cumference, L. At an angle � inclined to the flow stream,
CL is proportional to sin� [24]. For small �, sin��
xcm=ycm where xcm, ycm is the center of mass (centroid)
location. Therefore, we approximate the lift force as F �
m �xcm � �1=2��V2Ll�xcm=ycm, where �xcm is the accelera-
tion in the transverse direction and m is the total body

mass. In this experiment, the mass of the (wetted) loop is
much greater than that of the enclosed fluid. Hence, we
assume that the total body mass (m) is proportional to
�LLa

2 where �L is the density of the loop. Also, the y
component of the centroid, ycm, and the length Ll are
assumed to be proportional to the length of the loop if
the body is elongated due to the flow. With the trivial
solution for the x component of centroid, xcm � Cei!t,
we obtain an expression for the oscillation frequency: ! �
2�floop / V

����

�
p
=a

����

L
p

. This is consistent with our observa-
tions and underlies our rescaling of the data in Fig. 3. Put
differently, this is simply the oscillation frequency of a
hanging pendulum where the gravitational force is re-
placed by a drag force.

As the flow velocity increases, a more complicated
mode in the oscillatory state can be observed (left panel
in Fig. 4). In this case, the loop sheds more than four
vortices over a single period of oscillation. We refer to
this wake structure as a flaglike mode. We use this termi-
nology because the wake now resembles more that behind
a flapping flag (see [13]), and because the body itself looks
elongated and ‘‘flaglike’’. This is because the enclosed area
is now smaller in relation to L2 than for the body in the 2P
mode. To characterize the loop oscillation and the wake
structure, we again define a Strouhal number, now using
the oscillation frequency of the loop itself, or StL �
Afloop=V where A is the outer amplitude of oscillation as
indicated in Fig. 4. The corresponding Strouhal numbers
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FIG. 3. Frequency of an oscillating loop (floop) versus rescaled
velocity (V
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). We test over 6 different loop lengths [5 cm
(4), 5.5 cm (5), 6 cm (�), 6.5 cm (�), 7 cm (�), and 7.5 cm
(�)]. The open symbols are in the oscillatory state and the closed
ones are in the stationary state. The frequency of the oscillating
loop is linearly proportional to the rescaled velocity.

FIG. 4. Strouhal number of the loop (StL) versus the flow
velocity (V) for different loop lengths [5 cm (4), 5.5 cm (5),
6 cm (�), 6.5 cm (�), 7 cm (�), and 7.5 cm (�)]. Open symbols
are 2P mode and closed ones are flaglike modes. The Strouhal
numbers of the two modes are well separated, and the Strouhal
numbers of 2P modes are close to 0.2 whereas those of flaglike
modes are above 0.25.

PRL 97, 134502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
29 SEPTEMBER 2006

134502-3



for 2P modes and for flaglike modes are shown in Fig. 4.
The 2P mode yields StL approximately 0.2 and the flaglike
modes yield values above 0.25.

This separation in the respective Strouhal numbers is
caused by a discontinuous change of the amplitude A from
the 2P mode to the flaglike mode. Figure 5 shows the
simultaneous transitions of enclosed area (S) and ampli-
tude (A) of the oscillating loop. At high flow velocity, the
streamwise extension of the loop increases due to the
higher drag, and this presumably causes the observed
relative decrease in enclosed area in the flaglike mode.
Because of its now higher aspect ratio, the loop’s amplitude
increases (compare left and right panels in Fig. 4). The
causes of this abrupt change in enclosed loop area and
oscillation amplitude remain an open question. Following
this abrupt change, the frequency of vortex shedding also
increases presumably due to the higher aspect ratio. Unlike
the 2P mode, the oscillation of the loop and vortex shed-
ding are not in phase, and the wake becomes more
complicated.

We have reported on the dynamics of a flexible body as it
interacts with an impinging high-speed flow. We find that
the loop can have coexisting stable states. In the oscillatory
state, the loop oscillation frequency is linearly proportional
to the flow velocity and inversely proportional to the square
root of the loop length. A linear relation between frequency
and velocity is also found in the flow-induced oscillations
of loosely mounted cylinders [7,8]. Here, this relationship
is explained by a simple model based on the lift force of an

inclined airfoil. With small loop lengths and low flow
velocity, a 2P wake mode (with pairs of shed vortices
[8,21]) is observed and has constant Strouhal number
�0:2. At longer loop lengths and higher flow velocity,
a flaglike mode appears with higher Strouhal number
( 	 0:25). This separation in Strouhal numbers is a result
of abrupt changes in enclosed loop area and oscillation
amplitude.
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FIG. 5. Enclosed area (upper figure; normalized by L2=4�)
and amplitude (lower figure; normalized by L) of the oscillating
loop for 6 cm loop. Area and amplitude abruptly change as the
wake structure transits from 2P modes (open symbols) to flag-
like modes (closed symbols). As the velocity increases further,
the amplitude decreases due to the large drag force.
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