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We investigate the correlation structure of pure N-mode Gaussian resources which can be experimen-
tally generated by means of squeezers and beam splitters, whose entanglement properties are generic. We
show that those states are specified (up to local unitaries) by N�N � 1�=2 parameters, corresponding to the
two-point correlations between any pair of modes. Our construction yields a practical scheme to engineer
such generic-entangled N-mode pure Gaussian states by linear optics. We discuss our findings in the
framework of Gaussian matrix product states of harmonic lattices, raising connections with entanglement
frustration and the entropic area law.
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Introduction.—Multipartite entanglement in pure states
of many systems is a founding property and a crucial
resource for quantum information science, yet its complete
theoretical understanding is still lacking. A basic property
of entanglement is its invariance under unitary operations
performed locally on the subsystems. To describe entan-
glement efficiently is thus natural to lighten quantum sys-
tems of the unnecessary degrees of freedom adjustable by
local unitaries (LUs), and to classify states according to
standard forms representative of LU equivalence classes
[1]. Alongside the traditional qubit-based approach, quan-
tum information with continuous variables (CV) is a bur-
geoning field mainly spinning around the theory and
applications of entanglement in Gaussian states [2].

In this Letter we address the question of how many
physical resources are really needed to engineer and char-
acterize entanglement in pure Gaussian states of an arbi-
trary number of modes, up to LU operations. For states of
N � 3 modes, it has been shown that such a number of
minimal degrees of freedom scales as N�N � 1�=2 [3,4].
For a higher number of modes, however, a richer structure
is achievable by pure Gaussian states, as from the normal
form of Ref. [5] a minimal number of parameters given by
N�N � 2� can be inferred [6]. A random state of N � 4
modes, selected according to the uniform distribution over
pure Gaussian states, will be thus reducible to a form
characterized by such a number of independent quantities.
However, in practical realizations of CV quantum infor-
mation one is interested in states which, once prepared
with efficient resources, still achieve an almost complete
structural variety in their multipartite entanglement prop-
erties. Such states will be said to possess generic entangle-
ment [7], where generic means practically equivalent to
that of random states, but engineered (and described) with
a considerably smaller number of degrees of freedom.

Precisely, we define as ‘‘generic-entangled’’ those
Gaussian states whose local entropies of entanglement in
any single mode are independent, and bipartite entangle-
ments between any pair of modes are unconstrained.
Having a standard form for such N-mode Gaussian states,
may be in fact extremely helpful in understanding and
quantifying multipartite CV entanglement, in particular,
from the theoretical point of view of entanglement sharing
and monogamy constraints [4,8], and from a more prag-
matical approach centered on using entanglement as a
resource. We show that, to achieve generic entanglement,
for the global pure N-mode Gaussian state it is enough to
be described by a minimal number of parameters (corre-
sponding to the LU-invariant degrees of freedom) equal to
N�N � 1�=2 for any N, and thus much smaller than the
2N�2N � 1�=2 of a completely general covariance matrix.
Therefore, generic entanglement appears in states which
are highly not ‘‘generic’’ in the sense usually attributed to
the term, i.e., randomly picked. Crucially, we demonstrate
that generic-entangled Gaussian states coincide with the
resources typically employed in experimental realizations
of CV quantum information [2], and we provide an optimal
scheme for their state engineering.

Preliminaries.—We consider a CV system consisting of
N canonical bosonic modes, and described by the vector
X̂ � fq̂1; p̂1; q̂2; p̂2; . . . ; q̂N; p̂Ng of the field quadrature op-
erators, which satisfy the commutation relations �X̂i; X̂j	 �
2i�ij, with the symplectic form � � !
N and
! � � 0

�1
1
0�. Gaussian states (such as vacua, coherent, and

squeezed states) are defined by having a Gaussian charac-
teristic function in phase space [2]. They are fully charac-
terized by the first statistical moments (arbitrarily
adjustable by LUs: we will set them to zero) and by the
2N � 2N covariance matrix (CM) � of the second mo-
ments �ij � hfX̂i; X̂jgi=2� hX̂iihX̂ji. The CM � of an
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arbitrary N-mode Gaussian state can be written as follows
in terms of 2� 2 submatrices

 � �

�1 � � � "1N

..

. . .
. ..

.

"T1N � � � �N

0
BB@

1
CCA: (1)

Symplectic operations (i.e., belonging to the group
Sp�2N;R� � fS 2 SL�2N;R�:ST�S � �g) acting by con-
gruence on CMs in phase space, amount to unitary opera-
tions on density matrices in Hilbert space. Any N-mode
Gaussian state can be transformed by symplectic opera-
tions in its Williamson diagonal form [9] �, such that � �
ST�S, with � � diag f�1; �1; . . .�N; �Ng. The quantities
�i � 1 are the symplectic eigenvalues of � [10].

We define the symplectic rank @ of a CM as the number
of its symplectic eigenvalues different from 1, correspond-
ing to the number of nonvacua normal modes. Any pure
state has @ � 0. The CM�p of anyN-mode pure Gaussian
state satisfies the matrix identity [5]���p��p � 1. As a
consequence of the Schmidt decomposition, applied at the
CM level [11] for the bipartition ij�1; . . . ; i� 1; i� 1;
. . . ; N�, any �N � 1�-mode reduced CM of the CM �p of
a N-mode pure Gaussian state has symplectic rank
@ � 1.

Minimal number of parameters.—Adopting the above
definition of generic entanglement, we prove now the main
Proposition 1: a generic-entangled N-mode pure Gaussian
state is described, up to local symplectic (unitary) opera-
tions, by N�N � 1�=2 independent parameters.

Proof.—Let us start with a N-mode pure state, described
by a CM �p 
 � with all single-mode blocks in diagonal
form: we can always achieve this by local single-mode
Williamson diagonalizations in each of the N modes. Let
�n1 
 �2;...;N be the reduced CM of modes �2; . . . ; N�. It
can be diagonalized by means of a symplectic S2;...;N , and
brought thus to its Williamson normal form, characterized
by a symplectic spectrum fa; 1; . . . ; 1g, where a ��������������

Det�1

p
. Transforming � by S � 11 
 S2;���;N , brings the

CM into its Schmidt form, constituted by a two-mode
squeezed state between modes 1 and 2 (with squeezing
a), plus N � 2 vacua [11,12].

All N-mode pure Gaussian states are thus completely
specified by the symplectic S2;...;N , plus the parameter a.
Alternatively, the number of parameters of � is also equal
to those characterizing an arbitrary mixed N � 1 Gaussian
CM, with symplectic rank @ � 1 (i.e., with N � 2 sym-
plectic eigenvalues equal to 1). This means that, assigning
the reduced state �2;...;N , we have provided a complete
description of �. In fact, the parameter a is determined
as the square root of the determinant of the CM �2;...;N .

We are now left to compute the minimal set of parame-
ters of an arbitrary mixed state of N � 1 modes, with
symplectic rank @ � 1. While we know that for N � 4
this number is equal toN�N � 2� in general [5], we want to
prove that for generic-entangled Gaussian resource states

this number reduces to

 �N � N�N � 1�=2: (2)

We prove it by induction. For a pure state of one mode
only, there are no reduced ‘‘zero-mode’’ states, so the
number is zero. For a pure state of two modes, an arbitrary
one-mode mixed CM with @ � 1 is completely determined
by its own determinant, so the number is one. This shows
that our law for �N holds true for N � 1 and N � 2.

Let us now suppose that it holds for a generic N; i.e., we
have that a mixed �N � 1�-mode CM with @ � 1 can be
put in a standard form specified by N�N � 1�=2 parame-
ters. Now let us check what happens for a �N � 1�-mode
pure state, i.e., for the reduced N-mode mixed state with
symplectic rank equal to 1. A general way (up to LUs) of
constructing a N-mode CM with @ � 1 yielding generic
entanglement is the following: (a) take a generic-entangled
�N � 1�-mode CM with @ � 1 in standard form;
(b) append an ancillary mode (�N) initially in the vacuum
state (the mode cannot be thermal as @must be preserved);
(c) squeeze mode N with an arbitrary s (one has this
freedom because it is a local symplectic operation);
(d) let mode N interact couplewise with all the other
modes, via a chain of beam splitters [13] with arbitrary
transmittivities bi;N, with i � 1; . . . ; N � 1 [14]; (e) if de-
sired, terminate with N suitable single-mode squeezing
operations (but with all squeezings now fixed by the re-
spective reduced CM’s elements) to symplectically diago-
nalize each single-mode CM.

With these steps one is able to construct a mixed state of
N modes, with the desired rank, and with generic (LU-
invariant) properties for each single-mode individual CM.
We will show in the following that in the considered states
the pairwise quantum correlations between any two modes
are unconstrained. To conclude, let us observe that the
constructed generic-entangled state is specified by a num-
ber of parameters equal to: N�N � 1�=2 [the parameters of
the starting �N � 1�-mode mixed state of the same form]
plus 1 (the initial squeezing of mode N) plus N � 1 (the
two-mode beam-splitter interactions between mode N and
each of the others). Total: �N � 1�N=2 � �N�1. �

Quantum state engineering.— Following the ideas of the
above proof, a physically insightful scheme to produce
generic-entangled N-mode pure Gaussian states can be
readily presented (see Fig. 1). It consists of basically two
main steps: (1) creation of the state in the 1j�N � 1�
Schmidt decomposition and (2) addition of modes and
entangling operations [13] between them. One starts with
a chain of N vacua.

First of all (step 1), the recipe is to squeeze mode 1 of an
amount s, and mode 2 of an amount 1=s (i.e., one squeezes
the first mode in one quadrature and the second, of the
same amount, in the orthogonal quadrature); then one lets
the two modes interfere at a 50:50 beam splitter. One has so
created a two-mode squeezed state between modes 1 and 2,
which corresponds to the Schmidt form of � with respect
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to the 1j�N � 1� bipartition. The second step basically
corresponds to create the most general mixed state with
@ � 1, of modes 2; . . . ; N, out of its Williamson diagonal
form. This task can be obtained, as already sketched in the
above proof, by letting each additional mode interact step
by step with all the previous ones. Starting with mode 3
(which was in the vacuum like all the subsequent ones),
one thus squeezes it (of an amount r3) and combines it with
mode 2 via a beam splitter (characterized by a transmittiv-
ity b2;3). Then one squeezes mode 4 by r4 and lets it
interfere sequentially both with mode 2 (with transmittivity
b2;4) and with mode 3 (with transmittivity b3;4). This
process can be iterated for each other mode, as shown in
Fig. 1, until the last modeN is squeezed (rN) and entangled
with the previous ones via beam splitters with respective
transmittivities bi;N, i � 2; . . . ; N � 1. Step 2 describes the
distribution of the two-mode entanglement created in step
1, among all modes.

The presented prescription enables to create a generic
form (up to LUs) of multipartite entanglement among N
modes in a pure Gaussian state, by means of active

(squeezers) and passive (beam splitters) linear optical ele-
ments. What is relevant for practical applications is that the
state engineering is implemented with minimal resources.
Namely, the process is characterized by one squeezing
degree (step 1), plus N � 2 individual squeezings for
step 2, together with

PN�2
i�1 i � �N � 1��N � 2�=2 beam-

splitter transmittivities, which amount to a total of N�N �
1�=2 
 �N quantities. The optimally produced Gaussian
states can be readily implemented for N-party CV com-
munication networks [2,15].

Standard form.—The special subset of pure N-mode
Gaussian states emerging from our constructive proof ex-
hibits a distinct property: all correlations between ‘‘posi-
tion’’ q̂i and ‘‘momentum’’ p̂j operators are vanishing.
Looking at Eq. (1), this means that such a generic-
entangled pure Gaussian state can be put in a standard
form where all the 2� 2 submatrices of its CM are diago-
nal. The diagonal subblocks �i can be additionally made
proportional to the identity by local Williamson diagonal-
izations in the individual modes. This standard form for
generic-entangled N-mode Gaussian states, as already
mentioned, can be achieved by all pure Gaussian states
for N � 2 [3] and N � 3 [4]; for N � 4, pure Gaussian
states can exist whose number of independent parameters
scales asN�N � 2� [5] and which cannot thus be brought in
the q̂-p̂ block-diagonal form. Interestingly, all pure
Gaussian states in our considered block-diagonal standard
form are ground states of quadratic Hamiltonians with
springlike interactions [16].

Vanishing q̂-p̂ covariances imply that the CM can be
written as a direct sum�p � VQ 
 VP, when the canonical
operators are arranged as fq̂1; . . . ; q̂N; p̂1; . . . ; p̂Ng.
Moreover, the global purity of �p imposes VP � V�1

Q .
Named �VQ�ij � vQij

and �VP�hk � vPhk , this means that
each vPhk is a function of the fvQij

g’s. The additional N
Williamson conditions vPii � vQii

fix the diagonal ele-
ments of VQ. The standard form is thus completely speci-
fied by the off-diagonal elements of the symmetric N � N
matrix VQ, which are, as expected, N�N � 1�=2 
 �N.
Proposition 1 acquires now a remarkable physical insight:
the structural properties of the generic-entangled N-mode
Gaussian states, and, in particular, their bipartite and multi-
partite entanglement, are completely specified (up to LUs)
by the ‘‘two-point correlations’’ vQij

� hq̂iq̂ji between any
pair of modes. For instance, the entropy of entanglement
between one mode (say i) and the remaining N � 1 modes,
which is monotonic in Det�i [10], is completely specified
by assigning all the pairwise correlations between mode i
and any other mode j � i, as Det�i � 1�

P
j�iDet"ij.

The rationale is that entanglement in such states is basi-
cally reducible to a mode-to-mode one. This statement,
strictly speaking true only for the pure Gaussian states for
which Proposition 1 holds, acquires a general validity in
the context of the modewise decomposition of arbitrary
pure Gaussian states [11,12]. This correlation picture

s s -1

1/2

…

b2,3

r3

…

…

b2,4

…

r4

b3,4

rN

…

…

bN-1,N

b2,N

b3,N

b4,N

…

…

1       2      3       4          N-1     N

1       2      3       4          N-1     N

FIG. 1 (color online). How to create a generic-entangled
N-mode pure Gaussian state. White balls are vacua, while
each color depicts a different single-mode determinant (i.e.,
different degrees of local mixedness). Vertical arrows denote
single-mode squeezing operations, while horizontal circle-ended
lines denote beam-splitting operations bi;j between modes i and
j. See text for details.
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breaks down for mixed Gaussian states, where also classi-
cal, statistical-like correlations arise.

Gaussian matrix product states.—As an application, let
us consider Gaussian matrix product states (GMPS), de-
fined as N-mode states obtained by taking a fixed number,
M, of infinitely entangled ancillary bonds [Einstein-
Podolski-Rosen (EPR) pairs] shared by adjacent sites,
and applying an arbitrary 2M ! 1 Gaussian operation
P �i	 on each site i � 1; . . . ; N. The projections P �i	 can
be described in terms of isomorphic �2M� 1�-mode pure
Gaussian states with CM ��i	, the building blocks [17].

It is conjectured that all pure N-mode Gaussian states
can be described as GMPS. Here we provide a lower bound
on the numberM of ancillary bonds required to accomplish
this task, as a function of N. We restrict to ground states of
harmonic chains with springlike interactions. With a sim-
ple counting argument, the total number of parameters of
the initial chain of building blocks should be at least equal
to that of the target state, i.e., N�2M� 1��2M�=2 �
N�N � 1�=2 which means M � IntPart ��

����������������
4N � 3
p

�
1�=4	. This implies, for instance, that to describe generic
states with at least N > 7 modes, a single EPR bond per
site is no more enough (even though the simplest case of
M � 1 yields interesting families of N-mode GMPS for
any N [17] ). The minimum M scales as N1=2, diverging in
the field limit N ! 1. As infinitely many bonds would be
necessary (and maybe not even sufficient) to describe
generic infinite harmonic chains, the matrix product for-
malism is probably not helpful to prove or disprove area
law statements for critical bosons (complementing the
known results for the noncritical case [18] ), which in
general do not fall in special subclasses of finite-bonded
GMPS.

The matrix product picture, however, effectively cap-
tures the entanglement distribution in translationally in-
variant N-mode harmonic rings [17]. In this case the
GMPS building blocks are equal at all sites, ��i	 
 �8i,
while the number of parameters Eq. (2) of the target state
reduces to the number of independent pairwise correlations
(only functions of the distance between the two sites),
which by our counting argument is �N 
 �N �
N mod 2�=2. The corresponding threshold for a GMPS
representation becomes M � IntPart ��

�������������������
8�N � 1

p
�

1�=4	. As �N is bigger for even N, so it is the resulting
threshold, which means that in general a higher number of
EPR bonds is needed, and so more entanglement is inputed
in the GMPS projectors and gets distributed in the target
N-mode Gaussian state, as opposed to the case of an oddN.
This clarifies why nearest-neighbor entanglement in
ground states of pure translationally invariant N-mode
harmonic rings (which belong to the class of states char-
acterized by Proposition 1) is frustrated for odd N [19].

Conclusions.—In this Letter we studied pure N-mode
Gaussian states of CV systems, aimed to eradicate the
minimal number of degrees of freedom responsible for
the generic nonlocal features of the states. We showed
that a crucial subclass of such states, employed as typical
resources in CV quantum information, can be put in a
standard form described (up to local unitaries) by N�N �
1�=2 parameters, corresponding to the ground states of a
quadratic Hamiltonian with springlike couplings. This
form encompasses all pure Gaussian states for N � 3.
We operationally related these parameters with the active
and passive transformations needed to prepare the state. In
general, we interpreted those degrees of freedom as the
two-point correlations between any pair of modes, which
are thus responsible for the structure of generic entangle-
ment in Gaussian states. It would be worth to investigate
the exotic properties of multipartite entanglement arising
in Gaussian states which cannot be brought in the standard
form described here for N � 4.

I thank A. Serafini, N. Schuch, and M. M. Wolf for
clarifications, F. Illuminati for his wise advice, J. Eisert,
M. Ericsson, N. Linden, and J. I. Cirac for fruitful ex-
changes, and M. Plump for inspiring contacts.

[1] N. Linden et al., Phys. Rev. Lett. 83, 243 (1999).
[2] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77,

513 (2005).
[3] L.-M. Duan et al., Phys. Rev. Lett. 84, 2722 (2000).
[4] G. Adesso et al., Phys. Rev. A 73, 032345 (2006).
[5] M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004).
[6] N. Schuch and M. M. Wolf (private communication).
[7] R. Oliveira et al., quant-ph/0605126.
[8] G. Adesso and F. Illuminati, New J. Phys. 8, 15 (2006);

T. Hiroshima et al., quant-ph/0605021.
[9] J. Williamson, Am. J. Math. 58, 141 (1936).

[10] G. Adesso et al., Phys. Rev. A 70, 022318 (2004).
[11] A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312

(2001).
[12] A. Botero and B. Reznik, Phys. Rev. A 67, 052311 (2003).
[13] M. M. Wolf et al., Phys. Rev. Lett. 90, 047904 (2003).
[14] Squeezings and beam splitters are basic entangling tools in

CV systems. For N � 4, steps (c) and (d) should be
generalized to arbitrary one- and two-mode symplectic
transformations to achieve all possible Gaussian states.

[15] P. van Loock and S. L. Braunstein, Phys. Rev. Lett. 84,
3482 (2000); G. Adesso and F. Illuminati, ibid. 95, 150503
(2005).

[16] K. Audenaert et al., Phys. Rev. A 66, 042327 (2002).
[17] G. Adesso and M. Ericsson, Phys. Rev. A 74, 030305(R)

(2006).
[18] M. B. Plenio et al., Phys. Rev. Lett. 94, 060503 (2005).
[19] M. M. Wolf et al., Phys. Rev. Lett. 92, 087903 (2004).

PRL 97, 130502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
29 SEPTEMBER 2006

130502-4


