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Spontaneous Circulation in Ground-State Spinor Dipolar Bose-Einstein Condensates
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We report on a study of the spin-1 ferromagnetic Bose-Einstein condensate with magnetic dipole-dipole
interactions. By solving the nonlocal Gross-Pitaevskii equations for this system, we find three ground-
state phases. Moreover, we show that a substantial orbital angular momentum accompanied by chiral
symmetry breaking emerges spontaneously in a certain parameter regime. We predict that all these phases
can be observed in the spin-1 3’Rb condensate by changing the number of atoms or the trap frequency.
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The magnetic dipole-dipole interaction in ferromagnets
is responsible for a rich variety of spin structures [1].
Similar spin textures can also be expected to occur, due
to the dipolar interaction, in ferromagnetic Bose-Einstein
condensates (BECs) such as the spin-1 3’Rb BEC.
However, spinor BECs differ from ferromagnets in that
they exhibit spin-gauge symmetry that can generate mass
flow by developing spin textures [2]. One may therefore
wonder whether the dipole-induced spin texture can yield
spontaneous mass current in the ground state. In this Letter
we show that this is the case.

An additional motivation for our work is the recent
observation of a dipolar BEC in a system of spin-polarized
2Cr atoms [3]. The ground state of spinor dipolar BECs
has been studied theoretically by several researchers using
a single-mode approximation [4—6]. Magnetism of dipolar
BECs in one- and two-dimensional optical lattices has also
been investigated [7,8]. In this Letter, we study the ground-
state spin textures of a spinor dipolar BEC without invok-
ing the single-mode approximation. We show the existence
of three ground-state phases at zero magnetic field. In
particular, we identify chiral spin-vortex phase and show
that spontaneous circulation with broken chiral symmetry
emerges in this phase.

We consider a system of N spin-1 atoms with mass M
confined in a spin-independent potential Uy,,(r) =
Mw?(x*> + y*> + z%)/2. The Hamiltonian of the system is
given by [9]
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where i,,(r) is the annihilation operator of an atom in the
magnetic sublevel m =0, *1 at point r, Hy=
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~12V2/(2M) + Uy (r), F,,,, represents the spin-1 ma-
trix, and Hyq is the contribution of the magnetic dipole-
dipole interaction. The spin-independent and spin-
dependent interactions are characterized by gy =
4mh*(ay + 2a,)/(3M) and g, = 4mh*(a, — a,)/(3M), re-
spectively, with a; (s = 0, 2) being the s-wave scattering
length for the scattering channel with total spin s. For spin-
1 3Rb atoms we have 0 < —g, < g, and the ground state
is ferromagnetic.

The magnetlc dlpole moment of an atom is given by
o= gS,uBS + g,,uNI where M is the Bohr magneton,
My 1s the nuclear magneton, S and T are the electronic and
nuclear spin angular momenta, respectively, and gg; are
the Landé g factors. The matrix element of the dipole
moment between magnetic sublevels in the spin-1 hyper-
fine manifold is shown to be (m|g|m’) = gpupkF,,,.. For
the case of 8’Rb with S = 1/2 and I = 3/2, we have g =
(gs +5g;un/up)/4 = 1/2. Then the contribution of the
magnetic dipole-dipole interaction to the Hamiltonian is
given by
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where cgq = pogrpus/(4m) with g being the magnetic
permeability of the vacuum, and e = (r — r)/|r — r/|. We
ignore the coupling of the F = 1 manifold with the F = 2
manifold due to the dipolar interaction because the hyper-
fine splitting ~100 mK is much larger than the dipolar
energy ~1 nK.

Our system has three characteristic length scales: dipole
healing length &4 = h/\/2Mcgyqny, spin healing length

g = n/2M|g |ny, and Thomas-Fermi (TF) radius
Rrg = 2apo[gono/(hw)]/?, where ny = hw/go[5(ay +
2a¢)N/(8ap,)*° is the TF peak density, and ap, =
[h/(2Mw)]'/2. As shown below, the phase diagram is
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characterized by two dimensionless parameters Rrp/&qq
and RTF/ é‘: sp*

We investigate the mean-field ground state of the total
Hamiltonian H,,. The general form of the ferromagnetic
spinor order parameter is given by

¥, e "cos*(B/2)
(%):ﬁe—w VEsin(B/2)cos(/2) |, 3)
b e'“sin*(B/2)

where n is the number density, y is the gauge, and s =
(sinB cosa, sinB sina, cosB) is the unit vector parallel to
the magnetization. The dipolar interaction induces a spin
texture characterized by a spatial dependence of Euler
angles «, B, . This dependence induces mass and spin
velocity fields which can be calculated from continuity
equations 9n/dt+ V- (nv) =0 and d(ns,)/dt + V-
(nv + ns,v) =0, as v=—h/MVy+cospVa),
vi, = —h/2M)sin’ BVa, and v, + vy, = —h/(2M) X
e'*[—sinBcosBVa + iVB]. Here nv and nvl (n =
X, y, z) describe the current density of the mass and that
of the u component of the spin vector s, respectively. In
addition to the kinetic energy K, = [dri?/(2M)|V/nl?
arising from the spatial dependence of the total density, the
system has kinetic energies Ky, = [drinM|v]* and
Kgin = [drnMY ,|vG|* = [dri?/(4M)Y ,|Vs,|*
caused by the mass and spin currents, respectively. In the
case of ferromagnets, the domain structure is mainly de-
termined by the interplay between the dipolar interaction
and the spin stiffness that has the form of K. In the case
of dipolar BECs, the additional term K, is significant.
The ground-state phases can be classified by the sym-
metry of the order parameter. The total Hamiltonian H,, is
invariant under space inversion Pi,,(r) = i,,(—r), and
time reversal T¢,,(r) = (—1)"J1,,(r). It also possesses
rotational [i.e., SO(3)] symmetry in combined spin and
coordinate space around an arbitrary axis. However, as
we show below, the SO(3) symmetry is reduced to uniaxial
symmetry, and the obtained phases are eigenstates of the
projected total angular momentum J, = —i(9/d¢) + F,
in cylindrical coordinates r = (r, ¢, z), characterized by

alr) = ¢ + a(r, z2), (4a)
B(r) = B(r,2) = B(r, —2), (4b)
y(r) = —Ja(r) + ¥(r, 2), (4c)

with J being the eigenvalue of J,. We thus classify the
obtained phases by the value of J, space-inversion symme-
try, and time-reversal symmetry.

The ground-state phases are obtained by solving the
nonlocal Gross-Pitaevskii (GP) equations,

A
2

+(ge1f- — Cddb—)% = uiby, (5a)
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where u is the chemical potential, n =, [i,,|* is the
number density, and f = (f,, f}, f,) is the spin density

defined by f, = |y|> = |y_iI* and f, +if, =fi =
2 =2y + ). When the system is purely
ferromagnetic, the spin density satisfies f = ns. We de-
fine the scaled dipole field b = (b,, b, b,) as b,(r) =
=S iy [ (8, — 3e,e,)f,()/Ir — P and b. =
b, * ib,. The effective magnetic field produced by the
surrounding magnetic dipoles is given by cqab/(grpp).
We numerically solve Eq. (5) in three dimensions by the
imaginary-time propagation method. We prepare the initial
state by first solving Eq. (5) with c¢gq = 0, and then ran-
domizing local spin directions, keeping the number density
unchanged. Comparing the total energies of the obtained
textures, we obtain the phase diagram in the parameter
space of (Rrg/&p, Ryp/€q4) as shown in Fig. 1(a). For the

spin-1 ¥Rb BEC, we have &,/&4 = +/caa/1g1] = 0.30,
and the system follows the dotted line in Fig. 1(a). A
typical spin configuration in each phase is shown in
Figs. 1(b)—1(d). The symmetry properties are summarized
in Fig. 2. We now describe the properties of each phase.

Polar-core vortex (PCV) phase.—This phase has total
angular momentum of J = 0 and has a polar core, i.e.,
(1, o, ¥—1) = /n(0, 1,0) at r = 0 [10]. The length of the
spin vector | f|/n is less than unity for r < &,, and the spin
configuration far from the core is described by @ = * /2,
B = /2, and ¥ = const. Since the m = 1 component has
the phase winding number — 1 and the m = —1 component
has the phase winding number +1, the net mass current
vanishes while the net spin current remains, giving a non-
zero Ky, Time-reversal symmetry and space-inversion
symmetry are both broken, but the order parameter remains
invariant under the combined PT operation.

Flower (FL) phase [11].—This phase has J = 1 and can
continuously develop from a spin-polarized state. The spin
configuration is given by &(z>0) =0, a(z<0) = m,
0= B < /2, and ¥ = const. Since 8 ~ 0, most of the
total angular momentum N7 resides in the spin, and the
remaining small angular momentum is carried by mass
current. The spin current is also small. The system has
space-inversion symmetry while time-reversal symmetry is
broken.

Chiral spin-vortex (CSV) phase.—This phase has J = 1
and the spin structure is described by 0= a& = 7,
a(r,z) + a(r,—z) =m, and 0 = B < 7. The gauge ¥
also varies in space. As shown in Fig. 1(d), this phase

(Hy + gom)iby + (g1f+ — caab+)
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FIG. 1 (color). (a) Phase diagram of a ferromagnetic dipolar
BEC. The solid curve shows the first-order phase boundary
between the J =0 and J =1 phases, and the broken line
represents the second-order one and divides the phases with
and without spin chirality, where PCV, CSV, and FL stand for
polar-core vortex, chiral spin-vortex, and flower phases, respec-
tively. The schematic shown in each region represents the spin
configuration (black arrows) and mass flow (red arrows). The
spin-1 8’Rb BEC (¢ /&4qa = 0.30) traces the dotted line, which
is referred to as the Rb line, as a function of Rpp/ & (B)—
(d) Typical spin configuration in each phase. The top and bottom
panels show the unit vector f(r)/|f(r)| projected onto the x-z
and x-y planes, respectively. The color of the arrows represents
the magnitude of the spin density normalized by the number
density | f(r)|/n(r) (see the bottom scale).

has a coreless vortex whose size is of the order of &44. The
system has substantial spin and mass currents around the
rotational axis and has nonzero K, and K;,. Both time-
reversal symmetry and space-inversion symmetry are
broken.

The dependence of the dipolar energy on Rpp/&4q is
shown in the inset of Fig. 3. The dipolar energy is mini-
mized when the spin texture has a flux-closure structure
[12], i.e., when the divergence of the magnetization is ev-
erywhere zero. The PCV state, which satisfies V - f = O in
all space, has the lowest dipolar energy of the three states.

e U o gt x b x|
csv ofits | 1 X it X <)l X <l

FIG. 2. Broken (X) and unbroken (O) symmetries for each
phase in Fig. 1. The schematic in each cell shows the spin
configuration after the transformation by P, T, and PT.

The CSV state is different from the FL state in that
the chiral symmetry of the spin vortex is broken to form
a flux-closure structure. When the CSV state has a non-
zero total angular momentum in the +Z direction, there
are two degenerate whirling patterns of spins in the x-y
plane: clockwise (& <0) and anticlockwise (& > 0).
These patterns have the spin configurations of right-
handed and left-handed screws, which are transformed
into each other under space-inversion P. The system
selects one of the degenerate states by breaking the
chiral symmetry. Accompanied by the chiral symmetry
breaking, the net orbital angular momentum L, =
[dry ., (—ihd/d @)y, increases drastically as shown
in Fig. 3, where L, in each state is plotted as a function
of Ryp/&qq- The FL and CSV states both have a finite
orbital angular momentum, but the dependence on
Ryg/&4q 18 quite different. Since the order parameters in
the FL and CSV states are purely ferromagnetic, the spin
texture depends only on Rygp/&4q, and therefore L. is
independent of &g,

Finally, we discuss possible experimental situations. To
form a spin texture in the ground state, the Zeeman energy
must be smaller than the dipolar interaction energy; other-
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FIG. 3. Orbital angular momentum in each state as a func-
tion of Ryr/&4q. The inset shows the ratio of the dipolar energy
to the total energy Egq/Ew = (Haq)/{(H.y) for each state at
RTF/gsp =54
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FIG. 4. Orbital angular momentum as a function of (wN?2)!/>
for 3’Rb along the Rb line in Fig. 1.

wise the ground state is spin polarized. This implies that
B < 107 G for the spin-13Rb BEC withn = 10"> cm 3.
The critical field increases in proportion to the atomic
density. By changing the number of atoms or the trap
frequency, all three phases we have found can be experi-
mentally realized. Figure 4 shows the orbital angular mo-
mentum as a function of (wN?)!/5 along the Rb line in
Fig. 1(a). In the case of a BEC with N = 10°, for example,
the CSV phase exists in the region of 277 X 70 Hz = w =
2@ X 630 Hz, where L, increases up to 0.4Nh. It is inter-
esting to note that we can induce a phase transition by
controlling the trap frequency.

In summary, we have investigated the phase diagram of a
spin-1 ferromagnetic Bose-Einstein condensate with mag-
netic dipole-dipole interactions and found three phases,
namely, the polar-core vortex phase, the flower phase,
and the chiral spin-vortex phase. The chiral spin-vortex
phase has chirality in the formation of the spin vortex, and
the topological spin structure spontaneously yields a sub-
stantial net orbital angular momentum.

This work was supported by Grants in Aid for Scientific
Research (Grant No. 17071005 and No. 17740263) and
by 21st Century COE programs on ‘‘Nanometer-Scale

Quantum Physics” and “Coherent Optical Science”
from the Ministry of Education, Culture, Sports, Science,
and Technology of Japan. Y. K. acknowledges support by
the Japan Society for Promotion of Science (Project
No. 185451). M. U. acknowledges support by a CREST
program of the JST.

Note added.—The ground-state phase diagram of a
spinor dipolar system has recently been discussed in
Ref. [13].
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