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In this Letter, we investigate the occurrence of the Zeno and anti-Zeno effects for quantum Brownian
motion. We single out the parameters of both the system and the reservoir governing the crossover
between Zeno and anti-Zeno dynamics. We demonstrate that, for high reservoir temperatures, the short
time behavior of environment induced decoherence is ultimately responsible for the occurrence of either
the Zeno or the anti-Zeno effect. Finally, we suggest a way to manipulate the decay rate of the system and
to observe a controlled continuous passage from decay suppression to decay acceleration using engineered
reservoirs in the trapped ion context.
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The quantum Zeno effect (QZE) predicts that the decay
of an unstable system can be slowed down by measuring
the system frequently enough [1]. In some systems, how-
ever, an enhancement of the decay due to frequent mea-
surements, namely the anti-Zeno or inverse Zeno effect
(AZE), may occur [2].

In this Letter, we focus on the quantum Brownian mo-
tion (QBM) model , which is a paradigmatic model of the
theory of open quantum systems. This model, dealing with
the linear interaction of a particle with a bosonic reservoir
in thermal equilibrium, is widely used in several physical
contexts. It describes the dynamics of a particle interacting
with a quantum field in the dipole approximation [6], as
well as a quantum electromagnetic field propagating in a
linear dielectric media [7]. The model is used in nuclear
physics to describe, e.g. the two-body decay of an unstable
particle [8]. In quantum chemistry, the QBM model de-
scribes the quantum Kramers turnover, which forms the
basis of modern theory of activated processes [9].

Recently, this model has been investigated to explain the
loss of quantum coherence (decoherence) due to the inter-
action between the system and its surroundings. In particu-
lar, the absence of macroscopic quantum superpositions in
the classical world has been explained, using the QBM
model, in terms of environment induced decoherence
(EID) [6]. With the last term, we mean here a process
which transforms a highly delocalized state in position
and/or momentum, e.g. a superposition of coherent states,
into a localized classical state.

To the best of our knowledge, the conditions for the
occurrence of the quantum Zeno and anti-Zeno effects
have never been considered for the QBM model. The aim
of this Letter is to investigate the Zeno and anti-Zeno
phenomena in a system, namely, the damped harmonic
oscillator, which possesses a classical limit and where it
is therefore possible to monitor the transition from quan-
tum to classical dynamics caused by decoherence induced
by the environment. Previous studies focus on few level
systems and deal with completely quantum states, such as
the spin, which have no classical analogue [10,11].

Our main result is the demonstration that the occurrence
of either the Zeno or the anti-Zeno effect stems from the
short time behavior of the environment induced decoher-
ence, which therefore drives the Zeno-anti-Zeno crossover.
On the other hand, one can use the QZE or the AZE to
manipulate the quantum-classical border by prolonging or
shortening, respectively, the persistence of quantum fea-
tures in the initial state of the system. Moreover, we
suggest a physical context in which the Zeno-anti-Zeno
crossover can be observed with current technology by
means of reservoir engineering techniques [12].

The QBM microscopic Hamiltonian model consists of a
quantum harmonic oscillator linearly coupled to a quantum
reservoir modeled as a collection of noninteracting har-
monic oscillators at thermal equilibrium. In the limit of a
continuum of frequencies !, the reservoir properties are
described by the reservoir spectral density J�!� measuring
the microscopic effective coupling strength between the
system oscillator and the oscillators of the reservoir.

One of the advantages of the QBM model is that, for
factorized initial conditions, it can be described by means
of the following exact master equation [3,13,14]
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system position and momentum operators, where we have
set the mass of the particle m � 1.

The master equation given by Eq. (1), being exact,
describes also the non-Markovian short time system-
reservoir correlations due to the finite correlation time of
the reservoir. In contrast to other non-Markovian dynami-
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cal systems, this master equation is local in time, i.e.,, it
does not contain memory integrals. The whole non-
Markovian character of the system is contained in the
time dependent coefficients appearing in the master equa-
tion (for the analytic expression of the coefficients see, e.g.,
Ref. [4]). These coefficients depend uniquely on the form
of the reservoir spectral density. The coefficient r�t� de-
scribes a time dependent frequency shift, ��t� is the damp-
ing coefficient, ��t� and ��t� are the normal and the
anomalous diffusion coefficients, respectively [3]. In the
secular approximation, i.e., after averaging over the rapidly
oscillating terms appearing in the dynamics, the only two
relevant coefficients are the diffusion coefficient ��t� and
the damping coefficient ��t� [4]. A simple view of the
effect of the diffusion term can be given by looking at
the approximate solution [3] of the master equation given
by Eq. (1), in the position space,

 �S�x; x
0; t� ’ �S�x; x

0; 0� exp
�
��x� x0�2

Z t

0
��t1�dt1

�
:

(2)

The previous equation shows that the diffusion term is
responsible for the vanishing of the off-diagonal terms of
the density matrix in position space, i.e., for EID.

For the sake of concreteness, we focus on the case of an
Ohmic spectral density with Lorentz-Drude cutoff (see [5],
p. 25), J�!� � �!=��!2

c=�!
2
c �!

2� where !c is the cut-
off frequency. This form of the spectral density is one of the
most commonly used since it leads to a friction force
proportional to velocity, which is typical of dissipative
systems in several physical contexts. The main result of
the paper, however, holds for general forms of the spectral
density.

We assume that the system oscillator is initially prepared
in one of the eigenstates of its Hamiltonian, i.e., a Fock
state jni. During the time evolution the system is subjected
to a series of nonselective measurements, i.e., measure-
ments which do not select the different outcomes [15]. We
indicate with � the time interval between two successive
measurements, and we assume that � is so short (and/or the
coupling so weak) that second order processes may be
neglected. Stated another way, we assume that the proba-
bility Pn�t� of finding the system in its initial state jni, i.e.,
the survival probability, is such that Pn�t� ’ 1 and Pn�t� �
Pn	1�t�. After N measurements, the survival probability
reads [10,16]

 P�N�n �t� � Pn���N 
 exp���Zn���t�; (3)

where t � N� is the effective duration of the experiment,
and the effective decay rate �Zn��� is defined by the last
equality. In Eq. (3), we have assumed that the probability
Pn��� factorizes. This assumption is justified by the fact
that, in the following we will use second order perturbation
theory. As shown, e.g. in Ref. [17], up to second order in
the coupling constant, the density matrices of the system
and of the environment factorize at all times.

The behavior of the effective decay rate, appearing in
Eq. (3), defines the occurrence of the Zeno or anti-Zeno
effect. We indicate with �0

n the Markovian decay rate of the
survival probability, as predicted by the Fermi Golden
Rule. If a finite time �� such that �Zn���� � �0

n exists,
then for � < �� we have �Zn���=�0

n < 1, i.e., the measure-
ments hinder the decay (QZE). On the other hand, for � >
��, we have �Zn ���=�0

n > 1 and the measurements enhance
the decay (AZE) [16].

For an initial Fock state jni, there exist two possible
decay channels associated with the upward and downward
transitions to the states jn� 1i and jn� 1i, respectively.
The probability that the oscillator leaves its initial state
after a short time interval � can be written as �Pn��� �
P"n��� � P

#
n���, where P"n��� and P#n��� are the probabilities

that an upward or a downward transition, respectively, has
occurred in the interval of time 0< t < �. From Eq. (12) of
Ref. [4], neglecting second order processes, one gets
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dt
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where �nn�t� � hnj�S�t�jni. From Eq. (4), noting that
�nn�t� ’ �nn�0�, it is straightforward to see that the upward
and downward transition probabilities in the interval 0<
t < � are P"n��� � �n� 1�

R
�
0���t� � ��t��dt and P#n��� �

n
R
�
0���t� � ��t��dt, respectively. We note that the survival

probability Pn��� defined in Eq. (3) is given by Pn��� �
1� �Pn���. Assuming that � is small enough and keeping
only the first two terms in the expansion of the exponential
appearing in Eq. (3), one easily gets

 �Zn��� �
1

�

�
�2n� 1�

Z �

0
��t�dt�

Z �

0
��t�dt

�
: (5)

We notice that the quantity �Zn ��� can also be derived
starting from the generalized master equation obtained in
Ref. [18], applying the formalism to the case of the har-
monic oscillator. By definition ��t� and ��t�, up to the
second order in the coupling constant, are given by [3,4]

 ��t� � �2
Z t

0

Z 1
0
J�!� coth�@!=2kBT� cos�!t1�

� cos�!0t1�d!dt1; (6)

 ��t� � �2
Z t

0

Z 1
0
J�!� sin�!t1� sin�!0t1�d!dt1; (7)

with � microscopic dimensionless system-reservoir cou-
pling constant. We note that, for high reservoir tempera-
tures T, ��t� � ��t�. Inserting Eqs. (6) and (7) into Eq. (5)
and carrying out the double time integration, one obtains

 �Zn ��� � �
Z 1

0
J�!�fn���! sinc2�!���

� n���! sinc2�!���gd!; (8)
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with sinc�x� � sin�x�=x, !	 � �!	!0�=2, and n�	�! �
�2�coth�@!=2kBT��n� 1=2� 	 1�. In the limit �! 1,
one gets the Markovian value of the effective decay rate
�0
n � �2n� 1��M � �M, with �M and �M Markovian

values of the diffusion and damping coefficients,
respectively.

The quantity ruling the occurrence of either the QZE or
the AZE is the ratio

 

�Zn���

�0
n
�
�2n� 1�

R
�
0 ��t�dt�

R
�
0 ��t�dt

���2n� 1��M � �M�
: (9)

It is worth underlining that, in general, this quantity de-
pends on the initial state of the system, i.e., on the initial
Fock state jni. For high T, however, since ��t� � ��t�,
Eq. (9) becomes independent of the initial state

 

�Zn���
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n
’
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�
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��M

: (10)

Equation (10) approximates Eq. (9) also for initial highly
excited Fock states, i.e., n� 1. This equation, together
with Eq. (9), establishes a connection between two funda-
mental phenomena of quantum theory, namely, the quan-
tum Zeno effects and environment induced decoherence.
This connection and its physical consequences, which will
be carefully described in the rest of the Letter, constitute
our main result. We underline that, in deriving Eqs. (9) and
(10), no assumption on the form of the spectral density has
been done.

Equation (10) tells us that, for high T reservoirs and/or
n� 1, the effective decay rate depends only on the diffu-
sion coefficient ��t�, which in turn describes EID. This
yields a new physical explanation of the occurrence of
either Zeno or anti-Zeno effects for QBM. The eigenstates
of the quantum harmonic oscillator are highly nonclassical
states. They are not localized, either in position or in
momentum, and therefore they are very sensitive to envi-
ronment induced decoherence. If the average EID in the
interval between two measurements, quantified byR
�
0 ��t�dt=�, is smaller than the Markovian one, quantified

by �M, then when the system ‘‘restarts’’ the evolution after
each measurement, the effect of EID is again less than in
the Markovian case. Essentially, the measurements force
the system to experience repeatedly an effective EID which
is less strong than the Markovian one. In this case, the QZE
occurs. On the contrary, whenever the average increase of
EID in the interval between two measurements is greater
than its Markovian value, then the measurements force the
system to experience always a stronger decoherence, and
hence the system decay is accelerated (AZE).

An important consequence of Eq. (10) is that the
quantum-classical border can be manipulated by means
of the QZE and of the AZE. When the QZE occurs, indeed,
an initial delocalized state of the harmonic oscillator such
as its energy eigenstate remains delocalized for longer
times; hence, the QZE ‘‘moves forward in time’’ the

quantum-classical border. The opposite situation happens
when the AZE occurs.

The analytic expression of the diffusion coefficient al-
lows us to single out the relevant system and reservoir
parameters ruling the crossover between the QZE and the
AZE. The time �� at which �Z���� � �0, when it exists and
is finite, can be seen as a transition time between Zeno and
anti-Zeno phenomena [16]. Our analysis shows that there
exist two other relevant parameters, namely, the ratio r �
!c=!0, quantifying the asymmetry of the spectral distri-
bution, and the ratio kBT=@!0. For a fixed time interval �, a
change in the values of r and T may lead to a passage from
Zeno dynamics to anti-Zeno dynamics and vice versa.

For high T, it is easy to prove that a Zeno-anti-Zeno
crossover exists only for values of r < 1, i.e., for !0 >!c,
as it is shown in Fig. 1(a). This can be understood in terms
of EID by looking at the short time dynamics of ��t� in the
time interval 0< t < �, i.e., before the first measurement is
performed [see Fig. 1(b)].

The situation changes drastically for the case of a zero-T
reservoir, characterized by an asymmetric spectral density.
For n� 1, indeed, in contrast to the high T case, the Zeno-
anti-Zeno crossover exists also for values of r� 1, i.e., in
the case !0  !c. The region in which only Zeno dynam-
ics may occur now appears at the edge of the spectral
density function, i.e., for !0 ’ !c. The reason for such a
different dynamics for small values of !0 stems from the
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FIG. 1. (a) Ratio between the effective decay rate �Zn ��� and
the Markovian decay rate �n0 for high T. Solid line r � 0:5,
dotted line r � 1, dashed line r � 10. (b) Ratio between the
diffusion coefficient ���� and its Markovian value �M for high
T. Solid line r � 0:5, dotted line r � 1, dashed line r � 10.
(c) Ratio between the effective decay rate �Zn ��� and the
Markovian decay rate �n0 for T ’ 0 and n� 1. Solid line r �
0:1, dotted line r � 0:5, dashed line r � 10. (d) Ratio between
the diffusion coefficient ���� and its Markovian value �M for
T ’ 0. Solid line r � 0:1, dotted line r � 0:5, dashed line r �
10. A comparison between (a) and (c) shows the temperature
dependence of the Zeno-anti-Zeno crossover.
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strong decoherence, showing up at low temperatures not
only when r 1 (as in the high T case), but also for r� 1
[See Figs. 1(c) and 1(d)]. Summarizing, the occurrence of
the Zeno or anti-Zeno effects is directly related to the
absence or presence, respectively, of the so-called initial
jolt of the diffusion coefficient ��t� [3], which is the signal
of strong initial decoherence.

Another interesting aspect stemming from our results
concerns the Zeno-anti-Zeno crossover for an initial
ground state (n � 0) of the system oscillator. The high T
behavior is given by Eq. (10) [See Fig. 1(a) and 1(b)]. For
very low reservoir temperatures (T ’ 0�;�M ’ �M and
therefore the denominator of Eq. (9) approaches zero,
implying that �Z���=�0 � 1 always, i.e., the measure-
ments always enhance the decay (AZE). Summarizing, in
this case, by changing the reservoir temperature, e.g. start-
ing from high T and lowering the temperature, one ob-
serves a passage from the situation depicted in Fig. 1(a) to a
situation in which only the AZE is practically observable.

The possibility of controlling both the environment and
the system-environment coupling would allow one to
monitor the transition from Zeno to anti-Zeno dynamics.
The use of artificial controllable engineered environments
has been recently demonstrated for single trapped ions
[12]. In Ref. [19], it has been shown that the engineered
amplitude reservoir realized by applying noisy electric
fields to the trap electrodes in [12] can be used to simulate
quantum Brownian motion and to reveal the quadratic
short time dynamics. Shuttering these noisy electric fields,
one could model a fast switch off-on of the environment.
Actually, when the noise is off, the reservoir simply does
not exist anymore. The action of the sudden switch off-on
of the environment may be seen as a physical implemen-
tation of the operation of trace over the reservoir degrees of
freedom. The operation of trace is a typical example of a
nonselective measurement (see, e.g., Ref. [15], p. 321).
Hence, a succession of short switch off-on periods, realized
by shuttering the engineered applied noise, would induce
Zeno or anti-Zeno dynamics depending on the value of the
system and reservoir parameters and of the shuttering
period. This is the core idea for monitoring the Zeno-
anti-Zeno crossover with trapped ions.

It is worth underlining that since the measurements
causing the acceleration or inhibition of the decay, imple-
mented by a fast switch off-on of the noisy electric field,
are nonselective, they do not disturb the vibrational state of
the ion. Therefore, by using the set up of Ref. [12], a
comparison between the population P�N�n �t� of the initial
vibrational state (e.g. the vibrational ground state jn � 0i)
in presence of shuttered noise (with N the number of
switching off-on periods), and the population Pn�t� in
presence of unshuttered noise, would show that P�N�n �t�>
Pn�t� (QZE) or P�N�n �t�<Pn�t� (AZE) depending on the
choice of the parameters.

All the parameters !0, !c, T, and �, driving the Zeno-
anti-Zeno crossover, may be varied in the experiments.
Although the value of !0 may be modified only within a
certain range and under certain constraints, the modifica-
tion of both !c and T may be obtained by simply filtering
the applied noise and varying the noise fluctuations, re-
spectively [19]. Since all the parameters ruling the Zeno-
anti-Zeno crossover are easily adjustable in the experi-
ments, its observation in the trapped ion context should
be already in the grasp of the experimentalists.
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