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A Hamiltonian approach is introduced in order to address some severe problems associated with the
physical description of the dynamical Casimir effect at all times. For simplicity, the case of a neutral scalar
field in a one-dimensional cavity with partially transmitting mirrors (an essential proviso) is considered,
but the method can be extended to fields of any kind and higher dimensions. The motional force calculated
in our approach contains a reactive term—proportional to the mirrors’ acceleration—which is funda-
mental in order to obtain (quasi)particles with a positive energy all the time during the movement of the
mirrors—while always satisfying the energy conservation law. Comparisons with other approaches and a
careful analysis of the interrelations among the different results previously obtained in the literature are

carried out.
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Introduction.—Moving mirrors modify the structure of
the quantum vacuum, what manifests in the creation and
annihilation of particles. Once the mirrors return to rest, a
number of the produced particles may still remain, which
can be interpreted as radiated particles. This flux has been
calculated in several situations by using different methods,
as averaging over fast oscillations [1,2], by multiple scale
analysis [3], with the rotating wave approximation [4],
with numerical techniques [5], and others [6]. Here we
will be interested in the production of the particles and
their possible energy all the time while the mirrors are
moving. In the case of a single, perfectly reflecting mirror,
the number of produced particles as well as their energy
diverge while the mirror moves. Several renormalization
prescriptions have been used in order to obtain a well-
defined energy; however, for some trajectories this finite
energy is not a positive quantity and cannot be identified
with the energy of the produced particles (see, e.g., [7]).

Our approach relies on two basic ingredients: proper
use of a Hamiltonian method and the consideration of
partially transmitting mirrors, which become trans-
parent to very high frequencies. We shall prove, in this
way, both that the number of created particles is finite
and also that their energy is always positive for the
whole trajectory corresponding to the mirrors’ displace-
ment. We will also calculate the radiation-reaction force
that acts on the mirrors owing to the emission and ab-
sorption of particles, which is related with the field’s
energy through the energy conservation law, so that the
energy of the field at any time ¢ is equal, with opposite
sign, to the work performed by the reaction force up to
time ¢ [8,9]. Such force is usually split into two parts
[10,11]: a dissipative force whose work equals minus
the energy of the particles that remain [8], and a reactive
force vanishing when the mirrors return to rest. We will
show that the radiation-reaction force calculated from
the Hamiltonian approach for partially transmitting
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mirrors satisfies, at all time, the energy conservation law
and can naturally account for the creation of positive
energy particles. Also, the dissipative part we will obtain
agrees with the one calculated by other methods, as using
the Heisenberg picture or other effective Hamiltonians.
Note that those methods have problems with the reactive
part, which in general yields a nonpositive energy that
cannot be considered as that of the particles created at
any z.

In what follows, we first introduce the Hamiltonian
method for a neutral Klein-Gordon field in a cavity with
boundaries moving at a certain speed v < ¢. Then, a
single partially transmitting mirror in 1 + 1 spacetime
will be studied in order to illustrate the procedure and
prove the above statements. Our results will be compared
with the ones in the literature. Finally, the case of two
mirrors will be investigated to see that also here we obtain
physically meaningful quantities while the mirrors move,
in an unambiguous way, and that the dissipative force does
agree with previous results by other authors.

The Hamiltonian formulation.—Consider a neutral
massless scalar field in a cavity (), and assume that the
boundary is at rest for time # = 0 and returns to its initial
position at time 7. Suppose also its velocity to be of order
€ = v/c (dimensionless, it is of order 108 in [12]; see
later). The Lagrangian density of the field is £(z, x) = § X
[(0,0)* — |[Vi0]*], x € Q, CR3, t € R. In terms of the
canonical conjugated momentum &(f, x) = d(‘l—ﬁb) =
d,¢(t,x), the energy density of the field is £(7, x) =
£0,¢ — L(1t,x) = (&2 + |[Vi¢|?), while its energy is
E(;€) = [q dxE(1,%). As is well known, this energy
density does not coincide with the Hamiltonian one [13—
15]. The Hamiltonian density can be conveniently obtained
using the method in [16].

First, a (nonconformal) coordinate change is used to
convert the moving boundary ), into a fixed one {:
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(7 y), x(1y) = R(z,y) = (. R(1,y)) ( the new time).
The action of the system is S = [p [4 Bydi L7, y),
with L(7,y) = JL(R(7,y)), with J being the Jacobian of
the change, d°x = Jd%. For the function ¢(7,y) =
\/—qb(’R(f y)), the conjugated momentum is £(7,y) =

= \/J9,¢6(R (7, y)), and the Hamiltonian density

d(a ¢)
H(iy) = UE + IV b + E0:d — VTo,4). (1)

In the coordinates (¢, x) after some calculations,
H(t,x) = £t x) + £, x){(0,R(R (¢, x)), Vi (2, X)) +
$&(1, x) (1, x)0,(InJ)| g 1(,). For a single mirror which
follows a prescribed trajectory [eg(f), ¢] in 1 + 1 space-
time, we can set R(7, y) = y + €g(7), and obtain H (¢, x) =
E(t, x) + €g(1)&(t, x)0,. P (2, x).

Case of a single, partially transmitting mirror.—We here
consider a single mirror in 1 + 1 spacetime, following a
prescribed trajectory [¢, eg(r)]. When the mirror is at rest,
scattering is described by the matrix

_ s(w) r(w)e 2oL
S(w) (r(w)ezi“”“ s(w) )’

where x = L is the position of the mirror. The S matrix is
taken to be real in the temporal domain, causal, unitary,
and the identity at high frequencies [17]. Specifically,
1) S(—w) = S*(w), (i1) S(w) is analytic for Im(w) > 0,
with s(w) and r(w) being meromorphic (cutoff) func-
tions (the material’s permitivity and resistivity),
(iil) S(w)St(w) = Id, and (iv) S(w) — Id, when |w| — .

To reach the quantum theory from the Hamiltonian
approach, we set the mirror at y = 0 in the above co-
ordinates; the right and left incident modes are g, z(y) =
ﬁ{s(m)e‘i’”yﬁ(—y) +[e Y + r(w)e']0(y)} and
o1 () = 7= ([’ + r(w)e " ]0(=y) + s(w)e’ 0 (y)}.
In the coordinates (#, x) the instantaneous set of the right
and left incident eigenfunctions which generalize the set
for a perfectly reflecting mirror is g, (¢, x; €) = g, j(x —
€g(?)), j = R, L. In general, we do not know which is the
part of the Hamiltonian that describes the interaction be-
tween the field and the mirror. To get the quantized theory,
the energy of the field E(f) = [ dx&(t, x), which in the
presence of a single mirror does not depend on €, must be
considered as part of the free Hamiltonian of the system. In
the interaction picture the Schrédinger equation is
i0,|®) = €g(?) [ dxf;(t x;€)0,b(1, x; )| D) = €g(t) X
I dxé;(t,x;0)0,.¢,(t, x;0)|®) + O(e?). The average
number of (quasi)particles [18] and the dynamical energy
(e.g., the energy of the created particles) at time ¢ are,
respectively,

2

|

<FHa(t)> =

w+a)

Note this integral diverges for a perfect mirror (r =

N =3 [TdoT 60,10, @)

J=R.L

E)= 3 [TdooTal 0, T0. @

J=R.L

with T being the quantum evolution operator. A simple
but cumbersome calculation yields the following results:

dodo'wo’ ,
N =5 [ [ UL G + oLl 0)
A - SO0,

E0) = [ [ G0+ )P0
P e P Ot

where 6, is the Heavyside step function, 6,(7) = 0(t — 7),
and f the Fourier transform of f.

These two quantities are in general convergent.
However, for the seminal Davis-Fulling model [7] of a
single, perfectly reflecting mirror, both quantities diverge
when the mirror moves or when its movement has discon-
tinuities of some kind [15,19]. To obtain a finite energy,
different regularization techniques have been used. For
instance, with a frequency cutoff ¢™7¢, with 0 <y < 1,

8(ng@) +
[t 8*(7)d], and imposing that the kinetic energy of the
moving boundary be 1 (M, — 2g%(1), with M., the
experimental mass of the mirror some authors conclude

that the renormalized dynamical energy, namely, Eg(t), is
[7-10]

the regularized energy is (E(r; y)) = %[%(;) -

&) = = [-s0s0+ [ @i @)

However, when ¢ =< 6, with 0 < § < 1, this renormalized
energy is negative, which shows that, while the mirror
moves, the renormalized energy cannot be considered as
the energy of the produced particles at time ¢ [cf. the
paragraph after Eq. (4.5) in [7]]. We interpreted such
results as implying that a perfectly reflecting mirror is
nonphysical and decided to approach the problem by con-
sidering instead a partially transmitting mirror, transparent
to high frequencies. Results are rewarding: in our Hamil-
tonian approach Egs. (4) and (6), for the radiation-reaction
force, e.g., the difference between the energy density of the
evolved vacuum state on the left and right sides of the
mirror, we do get the right sign

f ﬁ i Re[e @+ g0, (0 + o")[lr(w) + ()P + |s(0) = s*(@)P] + O(). (8)

—1, s =0, ideal case), but nicely converges for our partially
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transmitting (physical) one where r(w) — 0, s(w) — 1, as
w — o [see (2)]. Energy conservation is fulfilled: the
dynamical energy at any time ¢ equals, with the opposite
sign, the work performed by the reaction force up to that
time ¢ [8,9]; in fact, from (6) and (8),

(E(0) = —e ﬁ Fra(r)a(n)dr. ©)

Comparison with other results.—First, we have repeated
the calculations using the Heisenberg picture approach of
[20]. We have obtained the “in”’ modes when the mirror
describes the prescribed trajectory [#, e€g(r)]. Then, we
have obtained the average number of produced particles
after the mirror returns to rest [21]:

Ne=1= Y fw/wdwdw'|(¢g"5,¢i;}f)lz, (10)
ij=RLJO JO ‘ !

by calculating the Bogoliubov coefficients (¢, d)iﬂ,’f}.) in
the null future infinity J7* (outgoing modes acquire a very
simple expression in JT). The final result turns out to be
exactly the same expression (5).

The radiation-reaction force in the Heisenberg pic-
ture, (Fy(¢)), is the difference between the energy den-
sity of the in vacuum state on the left and right sides of the
mirror. A simple calculation shows that the energy density
on both sides of the mirror is (£(f, x)) = [o doow *

# [re dodo'wo'g(0 + o) x(0)[1 + rw)r(e) —
s(w)s(w)]e T Oh(x(eg(t) — x)) + O(), x(w) =
0(w) — 6(— w) being the sign function. Note that the term
of order € is ill-defined, since the function ww’g(w + w’) X
[1+ r(w)r(w") — s(w)s(w')] is not Lebesgue integrable.
Some regularization is needed to obtain a well-defined
quantity. Defining the regularized energy by (£(#, x; 7)) =
Zj=R,L f(o)o dwe™7? [au(ﬁllg,j (u’ v, 7)814 d)l(:)],*] (u: v; 7) +
dypin (u, v; ¥)d, i(u, v; y)], with the in modes
regularized to obtain a cutoff independent quantity [22],
in the Heisenberg picture reads (Fy(f;7y)) =ﬁ
fRz dodo'ww'g(w+ o) x(w)+ x(0')][1+ rw)r(e’) —
s(w)s(w’)]e leltlop—ilwro)r + O(e2). This converges
and is cutoff independent, and a possible definition of the
renormalized radiation-reaction force is

Franlt) = g5 [ dwdo’ ot + o)

X [x(@) + x(@"][1 + r(o)r(o’)
— s(w)s(w)]e i @To) 4 O(€2). (1)

In general, this formula disagrees with the radiation-
reaction force (8) which was obtained using the
Hamiltonian approach. Moreover, we have been able to
prove (details will be provided elsewhere [22]) that the
force (11) coincides with the radiation-reaction force cal-
culated by Jaekel and Reynaud [23] after renormaliza-
tion: (£ g ren(t)) = (Fpy1en(1)). We thus conclude that the

method of Jaekel and Reynaud is equivalent to the quan-
tum theory in the Heisenberg picture. Furthermore, note
that € [ d{F g (0))g(t) = € [r dt(I:"J,R,rcn(t»g'(t), and this
identity proves that the dissipative parts of (Fy,(r)) and
(F ) pren(1) always agree.

However, in several situations the reactive parts do not

match. For instance, if r(w) = — w’fm and s(w) = ¢
with a > 0, there is the relation
. aE | N
<FHa(t)> == %g(t) + <FJ,R,ren(t)>r (12)

where (Fypuen(t) =2 [Pdz [ dr(z72 —273) X
e~ (=7%(7). The two forces differ in a reactive term.
Now the crucial point is that, during the movement of the
mirror, the work done by the motion force (F') g on(?)) is
not a negative quantity. Consequently, the dynamical en-
ergy is not positive and a meaningless result is obtained
because the dynamical energy is the energy of the pro-
duced particle. To avoid this difficulty, the reactive term
— € §(¢), which most naturally appears in the Hamiltonian
formulation for a partially transmitting mirror, comes to
rescue and renders a physically meaningful result.

Barton and Calogeracos [11] (see also [24]) studied the
case r(w) = — 12— s(w) = —2—_ with & > 0. The inter-
action between field and mirror can be described there by
the Lagrangian density 1[(9,¢)* — (3,¢)*] — a¢?5(x —
€g(r)). With the Hamiltonian method we have obtained the
corresponding quantized Hamiltonian, and [ dx&(t, x) +

ad’(t eg() =Y ;& [§ dww(al ;a,; +1/2).  This
leads, for these reflection and transmission coefficients,
back to our formulas (5), (6), and (8). However, two
important differences exist. First, to obtain the
Schrodinger equation, these authors make a unitary trans-
formation which does not seem easily generalizable to the
case of two moving mirrors. And second, in [11], following
[9,10], a mass renormalization is performed—in order to
eliminate the reactive part of the motion force—where the
energy of the field is not a positive quantity at any time .
Again, the concept of particle is ill-defined during the
mirror’s displacement.

Two partially transmitting mirrors.—We have finally
extended our method to the case of two moving mirrors
that follow prescribed trajectories [z, L;(1;€)], where
Li(t;e) =L; + €g;(t), with j=1,2 assuming that
L(t;€) < L,(t;€), for all t € R. In this case it is im-
possible, in practice, to work in the Heisenberg pic-
ture, because it is extremely difficult to obtain the in and
out mode functions in the presence of the two moving
mirrors. Instead, in order to get the dissipative part of
the motion force, the number of radiated particles, and
their energy, the approach of Jaekel and Reynaud can be
used, which starts from the effective Hamiltonian H IR =

A_Zj=l,26gj(t)ﬁj(t)’ where ﬁj(t) = limaao[é(l, Li— |6]) —
E(t,L; +|8])]is the force operator at the point x = L; [25].
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However, this method does not seem useful to obtain the
reactive part of the motion force and the dynamical energy
while the mirrors move. As before, in order to get those
quantities we are led to use our Hamiltonian approach.
This demands now considerable effort [22], e.g., general-
izing the model [11], described by the Lagrangian density
13,6~ (0,61~ 3 -120;678[x — L (1:€)]. the Ham-

iltonian in the interaction picture has the form H,(r) =
- 76[‘5)2(2):511([)] [[r dy(3,¢,(»)* + Di=12 aj((gl(Lj))z] +

€5 jm1n [rdy PO () — L)) + 5 b, ()] +
O(€?) in terms of free quantum fields defined from an
expansion in terms of left and right incident eigenfunc-
tions. Our dissipative part of the motion force [22] coin-
cides with the one obtained in [25]. For times 7 larger than
the stopping time, our quantum evolution operator is 7 7 =
Id—i[p dtH,(7). Using results from [11], we obtain ex-
plicitly that, for times 7 larger than the stopping time,
TT=Id+iey,; 1, [g dtgj(t)ﬁj(t), as it should be. We
see no basic obstruction to extend our procedure to higher
dimensions and fields of any kind.

We should mention, to finish, that there are proposals to
detect the radiated photons, although the reactive part and
the possible deviations from conservative motion seem out
of experimental reach yet [12].
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