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The dynamics of semiflexible polymers under the influence of shear flow is studied analytically. Power
laws are derived for various conformational and dynamical quantities which are in agreement with
experimental findings. In particular, the tumbling motion is analyzed and expressions are provided for the
probability distributions of the orientation angles and the tumbling time. The calculations explain the
similarities in the behavior of flexible and semiflexible polymers as well as free-draining and nondraining
systems.
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Experimental studies of individual DNA molecules in
steady shear flow by fluorescence microscopy have pro-
vided a wealth of information on single polymer dynamics
[1–6]. In particular, these experiments reveal remarkably
large conformational changes due to tumbling motion; i.e.,
a polymer stretches and recoils in the coarse of time [1,5].
The dependence of the tumbling time on the shear rate (or
Weissenberg number) was elucidated in Refs. [2,4]. The
authors of Ref. [4] were even able to measure orientational
distribution functions of �-DNA. A number of theoretical
studies have been performed in order to achieve a micro-
scopic understanding of the observed phenomena [2,7–11],
which provided various scaling relations for conforma-
tional and dynamical properties [4,7,9,11].

Since shear flows are omnipresent in biological systems
and technical applications, e.g., microfluidics, the under-
standing of the dynamics of semiflexible polymers—such
as DNA—is of great practical interest. The microscopic
conformational properties affect the macroscopic rheolog-
ical behavior of the polymer solution, and hence a detailed
theoretical description of the microscopic dynamics is
desirable.

The dynamic behavior of a macromolecule in shear flow
is governed by various parameters; aside from the shear
rate, the finite chain extensibility is of major importance.
To what extent hydrodynamic interactions, thermal fluctu-
ations, and chain persistence play a role has not yet been
explored, although some results for chain extension have
been presented [12–14].

In this Letter, the dynamics of a semiflexible polymer in
shear flow is studied taking into account hydrodynamic
interactions. An analytical expression is derived for the
orientational distribution function, and the dependence of
the tumbling time on shear rate is determined. It will be
shown that these quantities agree almost quantitatively
with experimental results. As it turns out, hydrodynamic
interactions play a minor role only, as long as the
Weissenberg number is used in data presentation.

The steady state dynamics will be analyzed only, where
thermal fluctuations determine the system behavior.
Hence, relevant dynamical information will be extracted

from ensemble averages. This demonstrates that valuable
insight into the system behavior can be obtained from
ensemble averages and not only from the dynamics of
individual molecules [10].

The analytical results show that due to shear flow high
order correlations in time and the whole history of time
evolution of the system are important for structural as well
as dynamical quantities. This is the origin of what is called
intermittency phenomena in Ref. [4]—characterized by
algebraic or exponential tails of distribution functions—
although the underlying thermal process is Gaussian and
Markovian and the equations of motion are linear. Thus, a
polymer in shear flow is an example where a very complex
system behavior is obtained despite the underlaying simple
Gaussian process [15].

The dynamics of macromolecules in shear flow is ana-
lyzed using a Gaussian semiflexible polymer model [16].
This model proved adequate in studies of equilibrium
[17,18] and nonequilibrium [19] dynamical aspects of
DNA in solution. The polymer of length L is described
by a continuous, differentiable space curve r�s; t�, where s
is the contour coordinate along the chain (�L=2< s<
L=2) [18]. The equation of motion, including hydrody-
namic interactions, is given by the Langevin equation
[17–19]
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with appropriate boundary conditions [17]. The term with
the second derivative in r captures the chain flexibility; i.e.,
it takes chain entropy into account. The term with the
fourth derivative accounts for bending stiffness. Note that
no excluded volume interactions are taken into account,
which may affect the system behavior for small and inter-
mediate Weissenberg numbers. The stochastic force ��s; t�
is assumed to be stationary, Markovian, and Gaussian with
zero mean. The shear rate tensor K possesses only one
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nonzero element: Kxy � _�, where _� is the shear rate. kB is
the Boltzmann factor, T the temperature, � � 3=�4p�,
where p is related to the chain persistence length (lp) via
p � 1=�2lp�, and � � 3p�=2 [16–19]. The factor � is
determined from the constraint for the contour lengthRL=2
�L=2h�@r=@s�

2ids � L [16–19], where � � 1 at equilib-
rium. Hydrodynamic interactions are taken into account by
the Rotne-Prager tensor and treated within the preaverag-
ing approximation [18]. For averaging, the equilibrium
distribution function without shear is used. This is certainly
an approximation which does not apply for all shear rates
equally well, but it will provide some insight into the
influence of hydrodynamic interactions on chain dynamics.
The approach neglects the effect of polymer deformation
on hydrodynamic interactions; hence, subtle effects on
conformations and dynamical quantities due to time-
dependent variations of the hydrodynamic interactions
cannot be captured. Equation (1) is then a linear equation
with coefficients depending in a nonlinear manner on the
shear rate. By the eigenfunction expansion r�s; t� �P
1
n�0 �n�t� n�s� (for the eigenfunction cf. Refs. [17,18]),

Eq. (1) turns into

 

d
dt
�n�t� � �

1

~�n
�n�t� �

���������������
kBT�n
3��~�n

s
�n�t� �K�n�t�; (2)

where � is the viscosity of the solvent, ~�n the nth relaxa-
tion time with hydrodynamic interactions, �n the nth free-
draining relaxation time, and �n�t� the nth stochastic force
amplitude [17,18]. The relaxation times �n are related to
the wave numbers 	n of the eigenvalue equation by

 �n �
��

kBTp��	
2
n � 	

4
n=�4p

2���
; (3)

where 	n � n�=L in the limit of a flexible polymer [18],
i.e., pL! 1. The shear rate tensor K couples d
xn�t�=dt to

yn�t�, and hence the whole time history of the latter is
important for the time evolution of 
xn�t�.

Using the eigenfunction expansion, a general expression
is obtained easily for the parameter � containing the sum
over all modes. With Eq. (3), in the limit pL� 1, and the
ratio ~�n=~�0

1 � �1� �
2=�2pL�2�=��n2� following for��

1, where ~�0
1 is the longest relaxation time ~�1 at � � 1, this

expression reduces to

 �3 ��5=2 �
f1� ��=�2pL��2g2�4

540pL
Wi2 � 0: (4)

Here, the Weissenberg number Wi � _�~�0
1 is introduced.

The solution of this equation deviates from the full ex-
pression by a few percent only for all Wi as long as pL>
2; i.e., the approximate expression applies even to rather
stiff polymers. The reason is that in the derivation of
Eq. (4) bending modes do not play a major role. Only the
lowest modes contribute to the overall system behavior.
For Wi� 1, Eq. (4) yields

 � 	Wi2=3
��������������������������
�4=�540pL�3

q
: (5)

This relation is an important result of this Letter, because
the factor � appears in the relaxation times, and hence in
all other quantities, and determines the system behavior at
large Weissenberg numbers. It is important to note that� is
only weakly dependent on the persistence length and does
not depend on hydrodynamic interactions. Equation (4)
suggests that for semiflexible polymers (pL> 2) a length
and persistence length independent behavior is obtained if
(measured) quantities are presented in terms of Wi=

�������
pL
p

. I
like to point out that even for rodlike polymers the depen-
dence �
Wi2=3 (Wi� 1) is observed.

Equation (3) clearly shows that an increasing � leads to
decreasing relaxation times; i.e., all processes become
faster. In addition, the contribution of bending modes
decreases. In general, a polymer of a given length behaves
increasingly flexible with increasing shear rate.

The conformational properties can conveniently be char-
acterized by the average gyration tensor [9]. Its component
in the flow direction (Gxx) increases with increasing shear
rate from the equilibrium value and reaches a plateau in the
limit Wi! 1, which is given by Gm

xx 	 90L2=945 using
the approximations leading to Eq. (4). The way in which
the maximum value is asymptotically reached is governed
by �. With � from Eq. (5), the calculation yields the
dependence �Gm

xx �Gxx�=Gm
xx � 1=

����
�
p

Wi�1=3. The

same dependence for the approach to full extension of a
wormlike tethered chain has been found in Ref. [20] by
scaling arguments, simulations, and from measurements.

The calculation of the gyration tensor transverse to the
flow direction yields Gyy � Gzz � kBT=���L�

P
1
n�1 �n,

which turns into Gyy 
��1 for large Wi, and hence the
thickness

��������
Gyy

p
transverse to the flow direction decreases

as
��������
Gyy

p

Wi�1=3 in the limit Wi! 1. Scaling argu-

ments predict the dependencies Wi�1=4 and Wi�3=11

[9,21], i.e., exponents with a magnitude somewhat smaller
than that of the current model. The experimental results
presented in Ref. [9] do not provide a unambiguous ex-
ponent and can be considered consistent with the current
theoretical dependence.

A polymer is not only deformed but also aligned in shear
flow. The authors of Ref. [4] provided a very valuable
contribution to the understanding of the alignment by
measuring the probability distribution functions of the
orientation angles. Such a probability distribution function
can also be calculated within the current approach. The
distribution function of the end-to-end vector re �
�xe; ye; ze�T is given by the Gaussian [11]

 P�re� � exp��1
2r
T
eA�1rTe �=��2��3=2

�������
jAj

p
�; (6)

where the matrix A can easily be obtained from the corre-
lation functions h
�n


�
n i. Integration over the magnitude of

re yields the distribution function P�#;’�, where # is the
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angle between re and its projection in the xy plane and ’ is
the angle between the projection and the x axis
(cf. Ref. [4]). Further (analytical) integration with respect
to # yields the distribution function P�’�. Using the ap-
proximations indicated before Eq. (4), the latter reads

 P�’� �

��������������������������������������������������
�4 � 4fWi

2
��2 � 4�=�2

q
2���2 � 4fWi

2
sin2�’�=�2 � 4fWi sin�2’�=��

;

(7)

with the abbreviation fWi �Wif1� ��=�2pL��2g.
Equation (7) accounts for the full distribution function
within a relative error of 4% only for pL � 5 and Wi > 1.

The distribution functions P�#;’� and P�’� exhibit
features already obtained for a dumbbell model of a poly-
mer [11]; however, the above expressions are more general
and include the dependence on polymer length and persis-
tence length. Naturally, the expressions exhibit the asymp-
totic power-law dependencies P�#� 
 j#j�2 and
P�’� 
 �sin’��2 in the limit of sufficiently large angles
[4,11]. In contrast to the considerations in Ref. [22], where
the dependence P�#� 
 j#j�2 is attributed to the determi-
nistic rotational motion of the polymer, the current distri-
bution functions are calculated in the steady state, where
the system behavior is governed by thermal fluctuations.
Hence, the universal aspects of the orientational distribu-
tion functions are independent of the particular source of
random excitations—they rather depend on the statistical
properties of the noise only [4].

The maximum of the distribution function P�’� follows
from the equation tan�2’m� � 2�=Wi, where ’m denotes
the angle at the maximum. The calculation of the orienta-
tional angle (
G) in terms of the components of the gyra-
tion tensor [ tan�2
G� � 2Gxy=�Gxx �Gyy�] [2] yields the
same dependence. With Eq. (5), the angle at the maximum

is given by ’m �
��������������������������
�4=�540pL�3

p
Wi�1=3 for Wi� 1. The

dependence on the Weissenberg number is in agreement
with computer simulation results [2]. Taking typical values
for �-DNA, the magnitude of the slope is larger for inter-
mediate Wi, consistent with experimental findings [2].

The calculation of the width (�’) of the distribution
function (7) at half height yields �’
Wi�1 in the limit
Wi! 0. Since in this regime � � 1, the distribution func-
tion P�’� is essentially independent of the persistence
length (pL� �=2); i.e., a universal distribution function
is obtained independent of any specificity of the polymer.

For Wi� 1 follows the relation �’ �
���������������
�2 � 4
p

�=fWi,
which yields �’
Wi�1=3�pL��1=3 for sufficiently large
pL. The same dependence with respect to the Weissenberg
number has been obtained in Refs. [4,11,22]. In addition,
the model yields a power-law dependence on the polymer
length and persistence length. This result is completely
different from the term provided in [4], where �’ is
independent of L and lp.

Figure 1 displays the probability density function P�’�
for �-DNA. The only parameters appearing in the theo-
retical description are the product pL, the thickness of the
DNA, and the Weissenberg number. Using the parameters
of Ref. [4], namely, L � 21 �m and the radius of gyration
r2
g � 0:53 �m2, the DNA persistence length is lp 	

70 nm, i.e., pL � L=�2lp� � 150. The DNA thickness is
set to d � 2 nm. Applying the experimental Weissenberg
number Wi � 25 leads to a pronounced mismatch between
the measurements (symbols) and the theoretical distribu-
tion function. Only by using a 4 times larger Wi, i.e., Wi �
100 in the theoretical model, the very good agreement of
Fig. 1 is obtained. I attribute this necessary adjustment to
differences in the longest measured and theoretical relaxa-
tion times, respectively, used in the definition of Wi. The
inset of Fig. 1 shows the width of P�’� at half height for
various Weissenberg numbers. The theoretical curve repro-
duces the experimentally obtained dependence very well,
when again 4 times larger theoretical Wi values are used.

Insight into the dynamical behavior of semiflexible pol-
ymers can be gained by the tumbling time [1,4]. Since
Eq. (1) is a Gaussian but non-Markovian process in gen-
eral, it is difficult to extract an analytical expression for
such a time. Tumbling is related to crossings of planes
parallel to the xz plane, or, expressed in terms of the angle
’, the plane ’ � 0, by an orientational vector, e.g., the
end-to-end vector. Hence, a characteristic time can be
defined by considering successive conformations where
ye is zero. This strategy is similar to a definition where
the angular dynamics is considered [7]. To study the dy-
namics of ye has the advantage that the normal mode
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FIG. 1. Comparison of the theoretical probability density func-
tion of the angle ’ (solid line) with experimental results on
�-DNA for the Weissenberg number Wi � 25 [4]. The top inset
displays the width at half height of P�’� and the bottom inset
shows the tumbling time tT � ~�1 for the theoretical model (solid
line), experiments (�), and simulations (�) [4,7]. The dotted
line is ��Wi�. For the comparison, the theoretical Weissenberg
numbers are set to 4 times the displayed experimental values.

PRL 97, 128301 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
22 SEPTEMBER 2006

128301-3



amplitudes 
yn constitute a Gaussian and Markovian pro-
cess with the correlation functions h
yn�t�


y
n�0�i �

kBT�n=�3��� exp��t=~�n� in the stationary state. For
pL > 5, the correlation function for ye is well approxi-
mated by the mode n � 1 only, i.e., hye�t�ye�0�i 	
hye�0�2i exp��t=~�1�, and thus is approximately a
Gaussian and Markovian process. The probability P�t�
for not crossing the plane defined by ’ � 0 is then decay-
ing exponentially for large times [15] with the character-
istic time tT � ~�1, which is identified as the tumbling time
tT . Hence, ~�0

1=~�1 � ~�0
1=tT � �, which means that the tum-

bling time is determined by the force along the polymer
contour exerted by the flow. Consequently, the force can be
directly measured via the tumbling time.

The authors of Ref. [4] have been able to measure the
probability density function of the elongation tumbling
time and determined characteristic tumbling times. The
bottom inset of Fig. 1 compares the measured values and
simulation results [4] with the theoretical prediction.
Taking 4 times large theoretical Weissenberg numbers
and dividing ~�0

1=~�1 by five instead of four, the latter adjust-
ment might be related to differences in the definition of the
tumbling time, the theoretical curve agrees qualitatively
with the measured data. The comparison shows that the
experimental values are in a crossover regime with respect
to the Weissenberg number. The limiting behavior tT 

��1 
Wi�2=3, follows for larger Wi. The power-law de-
pendence is consistent with the scaling predictions of
Refs. [4,22]. In addition, however, the current approach
predicts also a dependence on the chain and persistence
length [cf. Eq. (5)].

The present model does not predict any periodic (tum-
bling) motion [4] in contrast to measurements and simula-
tions of the power spectral densities (PSDs) of polymer
orientation [2] or correlations [10], respectively. Neither
the PSD of the end-to-end distance or the radius of gyration
in flow direction nor cross correlation functions among
their spacial components exhibit a maximum and thus no
deterministic cycle in the stationary state seems to be
present. (The PSDs of the polymer orientation [2] or
correlations among extensions [10] cannot be calculated
analytically due to appearing nonlinearities.) However, the
measured peak frequencies exhibit the same power-law
dependence on the Weissenberg number as the theoretical
tumbling time. Moreover, the simulations of Ref. [10]
show that the longest relaxation time of a polymer exhibits
the same dependence on the Weissenberg number as the
extracted tumbling time, which is in agreement with the
present theoretical analysis.

In summary, the semiflexible polymer model provides a
consistent description of the structural and dynamical
properties of DNA in shear flow. In particular, it shows
essentially no dependence on hydrodynamic interactions.
The influence of the latter on polymer dynamics is ad-

sorbed in the Weissenberg number. Thus, only a very weak
dependence on hydrodynamic interactions is expected for
models which take it into account in more detail. A weak
dependence on the persistence length is predicted for vari-
ous quantities. This weak dependence complicates the
measurement of DNA parameters by shear experiments. I
hope that the presented results will stimulate further ex-
perimental studies on DNA molecules to gain deeper in-
sight into length and persistence length specific features of
distribution functions and characteristic times.
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