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Cells play an active role in the maintenance of mechanical homeostasis within tissues and their
response to elastic forces is important for tissue engineering. We predict the collective response of an
ensemble of contractile cells in a three-dimensional elastic medium to externally applied strain fields.
Motivated by experiment, we model the cells as polarizable force dipoles that change their orientation in
response to the local elastic strain. The analogy between the mechanical response of these systems and the
dielectric response of polar molecules is used to calculate the elastic response function. We use this
analogy to evaluate the average cell orientation, the mean polarization stress, and the effective elastic
constants of the material, as a function of the cell concentration and matrix properties.

DOI: 10.1103/PhysRevLett.97.128103 PACS numbers: 87.18.�h, 87.10.+e, 87.80.Rb

Mechanical forces acting externally on entire tissues, or
generated internally by the contractile activity of individ-
ual cells within a tissue, play an important role in many
physiological processes, such as bone and muscle growth,
wound healing, angiogenesis, and the maintenance of me-
chanical homeostasis [1,2]. A fundamental understanding
of the physical properties of these active processes is of
prime importance in tissue engineering [1,3].

The responses of tissues to elastic forces are quite differ-
ent from the passive mechanical properties of ‘‘dead’’
composite materials. On short time scales the passive
elastic response of the matrix and the cellular cytoskeleton
[4] dominate the mechanical response of the tissue; how-
ever, on longer time scales many cell types [such as muscle
cells, fibroblasts, endothelial cells [1] ] respond to applied
forces by actively adjusting the cellular force pattern and
its polarity. Cells embedded within three-dimensional hy-
drogels [5,6], or deposited on elastic substrates [7], were
seen to polarize in the direction of a static strain field on a
time scale between hours and days, and to return to their
initial, isotropic state when the field was removed [8]. If the
system is acted upon by a fixed load that tends to expand
the material, the resulting enhancement of cellular con-
tractile forces in the direction of the external stress dimin-
ishes the net strain in the medium; this results in an
effectively more rigid and thus more stable system—in
accord with the principle of homeostasis [1].

Elastic deformations caused by localized, cellular con-
tractile forces give rise to long-range, elastic interactions
between cells [10] that scale as 1=d3 where d is the
intercellular distance. Previous theoretical models have
highlighted the role played by cellular traction forces in
modulating the mechanical nature of gels, but have not
accounted for the mechanical consequences of the long-
range elastic interactions between cells [11,12].

In this Letter, we present a quantitative theory that
focuses on the (long-range) collective elastic response of

an ensemble of active cells to static forces to predict the
cell polarization and effective elastic constants of the
system, as a function of the cell concentration and matrix
properties. We use an analogy to the dielectric response of
polar molecules to provide a simple mathematical frame-
work for analyzing the polarization behavior of cells. Our
focus is on the long-time orientational response of the cells
and the active forces they exert; the effects we predict
occur even if the (mean) elastic moduli of the cells and
the medium are identical.

Macroscopic theory: cell polarization and effective elas-
tic moduli.—In the absence of external forces, the com-
posite system of cells and matrix is isotropic (and
homogeneous on scales much larger than the cell size)
since we consider materials in which the cells are uni-
formly distributed and randomly oriented. The addition
of active cells to a gel results in a relatively short time-
scale compression of the overall material due to the intrin-
sic contractile forces exerted by the cells [13]. The system
then reaches a state of mechanical equilibrium in which the
stress in the medium, �0

ij, is balanced by the forces exerted
by the cells. We choose this as our reference state.

The excess strains, uij, and stresses, �ij, (relative to the
reference state) in the system are related by the renormal-
ized elastic moduli, C, of the entire composite including
both the cells and the matrix; �ij � Cuij [14]. Our interest
in this Letter is not in the derivation of the instantaneous
response given by C of the gel-cell composite from the
elastic properties of the individual cells and the matrix, and
the interactions between them [cf. Ref. [12] ], but rather to
quantify the active changes that occur on longer time scales
due to the collective polarization response of the cells in
the presence of external fields [15].

The long-range elastic deformations caused by the con-
tractile activity of each cell are dominated by the contri-
bution due to the force dipole tensor, pij �

P
filj, where ~f
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and ~l are the force at, and the radius vector to, each
adhesion contact of the cell with the matrix, and the sum
is over all contacts [10]. The polarization of cells in re-
sponse to applied forces involves a reassembly of the
cellular force pattern that in turn, changes pij. The macro-
scopic measure of cell polarization is the (ensemble) mean,
�hpiji, where � is the number of cells per unit volume. The
polarization of the cells in the direction of the principal
strain direction can be written as follows:

 Pij � ��hpiji � hpiji0� � ���ij � ��uij: (1)

The polarization tensor, Pij, measures the increase in the
mean dipole tensor relative to its value in the absence of
external forces and cell interactions, �hpiji0 � �0

ij [see
Eq. (7) below]. The forth-rank tensors � and � are, re-
spectively, the susceptibility tensors for the excess stress
and strain in the medium. These tensors contain all the
effects of the elastic interactions among the cells that
influence the orientational response of the cells to an
applied field.

The total excess stress in the system is a superposition of
the applied stress, �aij, and the polarization stresses due to
cell activity: �ij � �aij � Pij. This can be rewritten in
terms of the susceptibility tensors as: �aij � �I� ���ij �
��ij; Iijkl �

1
2 ��ik�jl � �il�jk� is the fourth rank symmet-

ric unit tensor. We find: �aij � ~Cuij with ~C � �C; or ex-
pressed in terms of the bulk and shear moduli as [16]:

 ~� � �v� ~� � �s�: (2)

These effective elastic constants reflect the active, long-
time, effective Hookean response of the system due to the
response of the cell polarization to the applied stress. Our
use of the elastic permittivity tensor, �, allows us to exploit
an analogy to the dielectric constant of polar materials; the
quantity � reflects the collective, elastic dipolar screening
effects that result in the entire system behaving as if it were
more rigid, as explained below.

We next present a mean-field theory for calculating the
permittivity tensor as function of cell (p, �) and matrix (�,
�) parameters. Our model focuses on the long-range and
active elastic interactions between the cells, and assumes
that the cell concentration is below the critical value for
phase transitions such as an isotropic to nematic transition
as described by Gruler et al. [17], due to excluded volume
interactions. Similarly to dielectrics, the permittivity ten-
sor, �, depends on the mechanism by which the cells
polarize. In the following, we focus on systems of cells
with bipolar morphologies (e.g., muscle cells and often
fibroblasts) for which it has been shown that the sum of the
forces exerted on adhesion contacts gives rise to two
(approximately) equal and oppositely directed contractile
forces centered on two opposite ends of the cell [18]. In this
approximation, each cell is modeled by an anisotropic
force dipole tensor: pij � �fl�l̂il̂j � pl̂il̂j, where ~f is the

force, ~l is the dipole separation, and p is the dipole strength
[typically jpj � 10�11 J [19] ]. For contraction dipoles
p < 0. In the model presented below the magnitude of
the force dipoles, p, is fixed but is free to vary in direction.
This is appropriate to the case of cells where the adhesion
contacts have saturated in size; however, one can also
consider the more general case in which the dipole strength
changes in response to the stress [20]. The simplification of
fixed p has a simple (experimentally testable) consequence
that external forces do not change the compressional re-
sponse of the system, namely ~� � � (or �v � 1), see
below.

Microscopic theory of the orientational elastic polariza-
tion.—To predict the susceptibilities from a microscopic
model we must average the dipole tensor. We shall do this
using an ensemble that is analogous to the Boltzmann
ensemble for thermal systems; the determining factor in
this ensemble is the elastic energy. It was recently shown
[10,21] that the optimal orientation of cells in the presence
of an elastic strain field can be predicted by minimizing the
interaction energy of the cellular dipole, pij, with the local
strain in the cell vicinity, uloc

ij :

 W � pijuloc
ij : (3)

To calculate the local stain field we adopt a mean-field
formalism inspired by the original theory of polar dielec-
trics by Onsager [22] that was later proved to be exact to
third order in the (electric) dipole density [23,24]. The
approach we take is also very similar, but not identical,
to the so-called self-consistent approach used for compos-
ite materials (e.g., Ref. [25]). Here, however, the local field
is introduced to find a statistical weight for each cell
orientation that may change due to the active biological
response of the cells.

To calculate the local strain that acts on each cell in the
ensemble, we consider an infinite medium that contains
cells—with an average strain, uij, in the medium. We
focus on one central cell in the system. The local field,
uloc
ij , that polarizes the cell differs from the average field,
uij, because the latter includes the (as yet unknown) mean
contribution of the central cell itself. Following Onsager,
we make the simple approximation that the permittivity
parameters �s and �v remain uniform in the surrounding
matrix, but are equal to unity in a region from which the
central cell has been (artificially) removed. This process
reduces the problem to the determination of the field in a
spherical inhomogeneity with the elastic constants of the
‘‘passive’’ (composite) matrix, C, within an infinite me-
dium characterized by the (as yet unknown) effective
moduli, ~C � �C and subject to the strain field at infinity,
uij. The solution to the elastic problem of a spherical
inhomogeneity is given by the well-known formula [26]:

 uloc
ij �

1
3�av � as�ukk�ij � asuij (4)
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with

 av �
~�

~sv��� ~�� � ~�
; as �

~�
~ss��� ~�� � ~�

; (5)

where ~sv �
1
3 �1� ~��=�1� ~�� and ~ss �

2
15 �4� 5~��=�1�

~��; and where ~� is the effective Poisson ratio.
In order to calculate the susceptibilities �v and �s we

self-consistently calculate the elements of the mean dipole
tensor, hpiji, for the situation of simple stretching in which
the mean stress in the matrix is a uniaxial tension, T, along
the z axis, namely: �ij � T�iz�jz (recall that the corre-
sponding applied load is given by �aij � ��ij). Using
Eq. (3) one finds [27]:

 W �
aspT
2�

cos2	�
�
av
9�
�
as
6�

�
: (6)

In order to calculate hpiji we must specify the probability
distribution function. One approach to the problem is based
on the observation discussed above that the elastic energy,
W, determines the optimal cell orientation. This suggests
the use of Boltzmann distribution: P ��� � e�
W���, where
� is the solid angle. The ‘‘noise’’ factor, 
, is a measure of
the energy scale associated with the instantaneous stochas-
tic assembly and disassembly of all the focal adhesions and
stress fibers within each cell; this may be cell and matrix
specific. Part of this energy is thermal in origin because the
adsorption of proteins to these adhesions is governed by
local equilibrium considerations. Similar use of the
Boltzmann distribution was made in other studies of cel-
lular systems, e.g., [3,9]. Kemkemer et al. [9] have shown
that the Boltzmann-like distribution can account for the
experimentally observed, orientational response of cells in
a periodically varying stress field.

A similar distribution function for the cell polarization
can be motivated by a model in which the direction of the
dipole is determined from a competition between the cell
alignment due to the external field, and due to a random
force that results from the heterogeneity of the gel.

For simplicity, we use the Boltzmann distribution to
derive an expansion of hpiji in powers of the tension, T:

 hpzzi �
p
3
�

2

45


p2as
�

T � � � � (7)

and the relation: 2hpxxi � 2hpyyi � p� hpzzi. Off diago-
nal elements, hp��i, are zero. The first term in the expan-
sion is the contraction stress in the reference state:
�0
xx � �0

yy � �0
zz �

1
3�p. The second terms in the expan-

sion of hpzzi and hpxxi are susceptibility elements of the
form �k � ����� and �? � �����, respectively, that are
related to �s and �v through: �s � �k � �? and �v �
�k � 2�?. We thus find:

 �s � �s � 1 � �as��s�� �v � �v � 1 � 0 (8)

with � � 
p2=�15��. We call this factor the orientational

polarizability of the cell, in analogy to the orientational
polarizability of polar molecules, �p2=3, where ��1 is
thermal energy.

The dependence of �s on �, �, and � can be derived in a
self-consistent manner as a cubic equation in �s from
Eqs. (5) and (8). For low cell concentrations we find the
following expansion of �s in powers of �:

 �s � 1� ���
2�4� 5��
15�1� ��

�2�2 � � � � : (9)

Results.—The orientational response of the cellular
force dipole to a tensile strain gives rise to screening effects
that are similar to those of an electric dipole in a dielectric.
The screening effect of an ensemble of elastic dipoles is
reflected in an effective rigidification of the medium,
namely, the strain field in response to applied forces is
diminished by the polarization field of the cells.

Figure 1 summarizes the mechanical properties of the
system as a function of cell concentration. The contribution
of the cellular polarization to the long-time active elastic
response of the medium, ~C, is contained in the permittivity
tensor � � ~CC�1. The relative change in several effective
moduli: the shear modulus, ~�=� � �s, the bulk modulus,
~�=� � �v, the Young’s modulus, ~E=E, and the Poisson
ratio, ~�=�, is plotted as a function of the dimensionless
quantity, ��, which is proportional to the cell concentra-
tion (�); recall that �� 
p2=� has dimensions of volume
and may be interpreted as the effective volume of influence
of the cell. The left panel shows the behavior for � � 0:3
and the right panel is for � � 0:5.

The active forces exerted by the cells result in a rigid-
ification of the material as evidenced by the increase of
both the effective shear, ~�, and the effective Young’s
moduli, ~E, as shown in Fig. 1. The saturation of ~E with
increasing cell concentration reflects the fact that ~� � �
(see below), as evident from the relation ~E � 9~� ~�=�3~��
~��. The latter result, however, should be taken with caution
in view of the limited accuracy of the Onsager model at
high concentrations due to higher order correlations, ex-

0 1 2 3 4
ρ α

-2

0

2

4

6

8

10

C
~

/ C

ν=0.3

0 1 2 3 4
ρ α

0
1
2
3
4
5
6
7
8

C
~

/ C

ν~0.5

FIG. 1 (color online). The elastic permittivity constants and
the relative change in the effective elastic moduli: Black—shear
modulus, red—Young’s modulus, blue—Poisson ratio, and
green—bulk modulus. The black and green curves are (also)
the two elastic permittivity constants, �s and �v, respectively. For
incompressible materials (right panel), ~� � � � 0:5 and ~�=� �
~E=E.
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cluded volume interactions, etc. The Poisson ratio, ~�,
decreases monotonically with increasing cell concentra-
tion, attaining negative values (>�1) for high enough
values of ��. As the cells orient parallel to the applied
uniaxial stretch, the overall contraction in the parallel
direction increases while the contraction in the perpendicu-
lar direction decreases. This results in an overall net force
pushing outward in the perpendicular directions that op-
poses the natural tendency of the matrix to contract later-
ally. This results in a smaller effective Poisson ratio for
media that are not totally incompressible.

Our results that predict no change in the effective bulk
modulus are applicable so long as there is no change in the
magnitude of the elastic dipole moment of the cells due to
the external force [20].

We also predict the dependence of the mean polariza-
tion, Pij (of the cells in the bulk), on cell concentration in
two simple situations: (i) The medium is uniaxially
stretched along the z axis by a fixed load with free surfaces
normal to the x̂ and ŷ directions: �azz � Ta and �axx �
�ayy � 0. (ii) The medium is stretched with a constant
strain in the ẑ direction with fixed surfaces in both the x̂
and ŷ directions: uzz � �l=l and uxx � uyy � 0. Note that
in this case, the cellular force is balanced by equivalent
forces that hold the boundaries: �azz � �~��

4
3 ~�� �l

l and
�axx � �ayy � �~��

2
3 ~�� �l

l . In the analogous system of
electrical dipoles, these two situations correspond, respec-
tively, to a parallel plate capacitor with fixed charge, and to
a capacitor with fixed voltage.

When the cell concentration is dilute (�! 0), one ex-
pects that the mean force generated by the cells increases
linearly with cell concentration; indeed we find: Pzz�0� �
� 2

3��T
a in the first case and Pzz�0� � �

4
3���

�l
l in the

second case; in both cases Pxx � Pyy � �Pzz=2> 0. The
sign of the polarization elements shows that the average
cellular force (developed relative to the reference state)
points outward in the xy plane, and opposite to the external
field in the ẑ direction. Using Eqs. (5) and (8) we find that
the normalized polarization, Pzz=Pzz�0�, is equal to as=�s
in the first case and to as in the second case [27]. For fixed
load, Pzz=Pzz�0� decreases with �. This is because increas-
ing the concentration of contractile cells results in a larger
induced, contractile force that opposes the applied exten-
sional stress, and diminishes the strain in the medium
(indeed, uzz � Ta= ~E and ~E increases with ��). But the
decrease in the local strain also decreases the tendency of
the cells to align with the external stress. In contrast, if the
strains uzz � �l=l and uxx � uyy � 0 are held fixed, the
elastic screening field is compensated by suitable tractions
at the boundaries of the specimen. This results in a relative
increase in the cell polarization as the cell concentration is
increased.
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