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We numerically study many-body interactions among colloidal particles suspended in a nematic liquid
crystal, using a fluid particle dynamics method, which properly incorporates dynamical coupling among
particles, nematic orientation, and flow field. Based on simulation results, we propose a new type of
interparticle interaction in addition to well-known quadrupolar interaction for particles accompanying
Saturn-ring defects. This interaction is mediated by the defect of the nematic phase: upon nematic
ordering, a closed disclination loop binds more than two particles to form a sheetlike dynamically arrested
structure. The interaction depends upon the topology of a disclination loop binding particles, which is
determined by aggregation history.
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Colloidal particles are usually suspended in an isotropic
liquid such as water and oil. When colloidal particles are
dispersed in a nematic liquid crystal, which is a liquid with
long-range orientational order, the director field of a ne-
matic solvent around particles is distorted due to surface
anchoring effects of particles. This feature leads to very
complex elastic interactions among them [1–9]. Thus,
aggregation behavior is expected to be different from that
in an isotropic liquid. This topic has recently attracted
considerable attention since it may open up novel applica-
tions of colloidal suspensions [2,10,11]. It may also have a
biological relevance since proteins often exist in a liquid
crystalline phase [12].

Here we consider a situation where a particle accom-
panies a disclination line of s � �1=2 [13] around its
equator, which is called Saturn-ring defect. This type of
defect is known to be formed when small particles are
dispersed in a nematic liquid crystal and directors tend to
align perpendicular to the colloid surface (so-called
homeotropic anchoring). A set of a particle and its
Saturn-ring defect has a quadrupolar symmetry, which
causes a quadrupolar interaction between the particles
[1,4,5,14,15]. Furthermore, it was shown that complex
many-body interaction can be predicted by a coarse-
grained description of a particle-defect pair [5]. However,
competition between particle surface anchoring of point
symmetry and far-field director field of a different
symmetry leads to a richer variety of interparticle inter-
actions than previously thought. For example, Guzmán
et al. [16] recently reported a defect structure which is
different from the quadrupolar symmetry, in a confined
geometry. Thus, many-body interactions among par-
ticles accompanying Saturn-ring defects remain elusive.
In this Letter, we propose a new type of interparticle
interactions mediated by a disclination line, based on the
results of our numerical simulation. We also demonstrate
that the selection of a defect structure depends upon ag-
gregation history.

Since interactions between particles mediated by the
elasticity of a nematic solvent intrinsically have many-
body nature, it is very difficult to describe the forces acting
on particles analytically [1,3–5]. Thus, numerical simula-
tions are often employed to predict behavior of such sys-
tems [16–19]. Recently we proposed a new method for
simulating the dynamics of colloidal suspension in nematic
liquid crystal including nematohydrodynamic effects [20]
by introducing a nematic order parameter to a ‘‘fluid
particle dynamics (FPD)’’ method [21]. Our method en-
ables us to simulate full dynamical coupling among parti-
cles, nematic orientational order and flow field, which are
the three relevant physical variables to describe this sys-
tem. To get rid of the solid-liquid boundary condition of the
velocity field, which makes simulation of colloidal suspen-
sions quite difficult, we treat solid particles as undeform-
able fluid particles having a higher viscosity than the
solvent in FPD [21]. In our FPD method, other degrees
of freedom, such as ion concentration for a charged col-
loidal system [22] and a concentration field for a binary
mixture [23], can be introduced straightforwardly, since
the flow field of the solvent is solved as a continuous field.

Here we briefly explain our numerical method. The
coarse-grained variables necessary for the physical de-
scription of dynamics of colloids suspended in an aniso-
tropic host fluid are the colloidal particle position fr�g,
nematic order parameter Qij [24], and fluid velocity field
v. Here index � stands for an individual particle. We
express particle � using a function ���r� as ���r� �
�tanhf�a� jr� r�j�=�g � 1�=2, where a and � are the
radius and interface width of the particle, respectively
[21]. For a nematic liquid crystal, we employ the following
free energy functional:
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Here��r� �
P
����r� is the concentration field represent-

ing the particle distribution. The first term of Eq. (1) is the
free energy of a bulk nematic phase given by f�Qij;���
�1
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2, where
B and C are the positive constants. A is negative and
positive above and below the transition, respectively.
Note that even below the transition, the inside of particles
remains negative since A�1� 2��< 0. The second and
third terms of Eq. (1) represent the Frank elasticity: K1

and K2 are their elastic moduli. The fourth term is the
anchoring energy of the nematic phase at the particle
surface: W is the energetic cost of the anchoring per unit
area. The fifth term represents a coupling between an
external (electric or magnetic) field Ei and the director
field.

Time evolution of Qij and v is then described by
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are the effective chemical potential for particle concentra-
tion � and the molecular force field for nematic order Qij,
respectively [24]. Aij �
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Hij is a mechanical stress

tensor for the flow field [25,26]. �1, �4, �5, �6, �1, and
�2 are constants having a dimension of viscosity. In the
spirit of FPD, the shear viscosity depends on the particle
configuration as �4 � ��4 ���4��r� [21]. Here ��4 and
��4 � ��4 correspond to the shear viscosities outside and

inside a fluid particle, respectively. Here F�r� �P
�F����r�=

R
dr���r� is the force field calculated from

the force directly acting on particle �, F�: F� �
� @

@r�

P
�V�jr� � r�j�, where V�r� is the direct interpar-

ticle interaction. We employed the repulsive part of the 12-
6 Lennard-Jones potential as V�r�, whose length is set to be
2a. �ij in Eq. (2) is the thermal fluctuation forQij. Here we
impose the thermal fluctuation only for Qij for simplicity.
We assume that the density of a colloidal particle is the
same as that of a host fluid; thus, the density � is constant.
Pressure p is determined to satisfy the incompressible
condition @ivi � 0. Time evolution of the position of
particle � is described by the average fluid velocity inside
the particle as dr�=dt �

R
drv�r����r�=

R
dr���r�. The

length, time, and force are normalized by the characteristic
length � �

������������
K1=A

p
, characteristic rotational time tQ �

�1�2=K1, and elastic modulus K1, respectively. We de-
note the scaled value of variable x as ~x.

In this Letter, we employ the following parameters: the
Reynolds number �K1

	�1
� 0:02, the ratio between the two

Frank elasticity moduli K2=K1 � 0:5, B=A � 25, C=A �
20, and ~W � 10 (strong anchoring). We denote the degree

of orientational order of the nematic phase as Q0 �
B�

���������������
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p

6C . The ratios between the viscosities of the ne-
matic phase are as follows: �1Q2
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is a viscosity for usual shear flow. As an FPD

parameter, the viscosity difference between the inner and
outer part of the particle is set to be � ��4 ���4�= ��4 � 50.
We assume � � � for simplicity and set � to a lattice size.
We solved the time development of the particle positions
and the orientational field [Eq. (2)] using the explicit Euler
scheme, and the flow field [Eq. (3)] by a MAC (maker and
cell) method with a staggered lattice [27]. The time incre-
ment was �~t � 0:01.

First we study how a pair of particles (with homeotropic
anchoring) interact with each other after an isotropic-to-
nematic transition. Our simulations reveal two configura-
tions under a weak external field: (a) the well-known
configuration stabilized by the quadrupolar interaction
and (b) a new type of (quasi-)stable configuration, where
a pair of particles are bound by a ‘‘figure of eight’’ dis-
clination loop. Figures 1(a) and 1(b) show the formation
process of structures (a) and (b), respectively.

We initially place a pair of particles (~a � 6) with the
interparticle separation �~r � 14 in an isotropic phase of a
liquid crystal. At ~t � 0, we quench a system to the nematic
phase while applying an external field Ez � 0:1 perpendic-
ularly to the line connecting the particle centers and im-
posing thermal orientational fluctuations j�ijj � 1� 10�2.
In the early stage, the nematic ordering is affected by the
surface anchoring and the external field. As a result,
formed is a transient defect configuration, which is sym-
metric to both the external field and particle positions
[Figs. 1(a) and 1(b) (~t � 30)]. This structure is quite simi-
lar to one found by Guzmán et al. [16] under a strong

FIG. 1 (color online). Two types of defect formation processes
around a pair of particles. A transient defect structure formed in
the early stage (~t � 30) becomes unstable and transforms into
either (a) the lowest energy structure stabilized by the quad-
rupolar interaction or (b) a new type of (quasi-)stable configu-
ration, in which a single disclination loop is shared by two
neighboring particles.
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spatial confinement between two parallel walls with ho-
meotropic anchoring [28].

In our case, this structure appears only transiently and
transforms into the lower-energy configurations [see
Fig. 1(a) (~t � 50) and Fig. 1(b) (~t � 200)]. The final
configurations are selected randomly by the thermal noise
�ij. When two nodes are broken in the same side of the
disclination, the two separated ring defects are formed as in
Fig. 1(a) (~t � 50). As time elapses, the particles move to
form the stable quadrupolar configuration [see Fig. 1(a)
(~t � 1000)]. There the separation between the particles is
�r=�2a� 	 1:4 and the angle between the direction of the
external field and the line connecting the particle centers is
nearly 50
. This is characteristic of the quadrupolar con-
figuration reported previously [1,4,5,14,15]. On the other
hand, when nodes in the opposite side are disconnected,
only a single disclination loop having a ‘‘figure of eight’’
structure remains [Fig. 1(b) (~t � 200)]. The disclination
loop tends to shrink to reduce the elastic energy, but does
not cross itself due to a high energy barrier for such
topological change. We can say that the particles are
topologically arrested by a closed disclination loop. Here
the particle centers sit on a plane perpendicular to the
external field and their separation is �r=�2a� 	 1:1. This
defect structure has a chirality. The two types of chiral
structures can be created with an equal probability. Even
more than three particles can be bound by a single-stroke
disclination loop by the same mechanism. Since a discli-
nation loop tends to be formed on a plane perpendicular to
the director field, a sheetlike planar aggregate is formed
(see the inset of Fig. 3). We note that the interaction
depends on the interparticle separation in a nontrivial
manner due to the intrinsically nonlocal nature.

We confirmed that the stored elastic energy of configu-
ration (a) is lower than that of two isolated ones with
separated Saturn-ring defects, as shown previously [1,4].
Since there is no energy barrier between these configura-
tions, isolated particles can smoothly form configuration
(a). On the other hand, the stored elastic energy of the
‘‘figure of eight’’ defect structure [Fig. 1(b)] is higher by
�150kBT than that of two isolated particles [30]. However,
once this structure is formed, it remains as it is due to a
large barrier for the topological change of the defect struc-
ture. As shown above, this structure is not selected ener-
getically but kinetically: a local minimum configuration on
the kinetic path.

Next we show the aggregation dynamics of a many-
particle system in Fig. 2. At ~t � 0, we quenched the system
from an isotropic phase to a nematic one without applying
any external field. Just after the quench, nematic ordering
takes place in a solvent. Reflecting nematic ordering, dis-
clination lines emerge and their length quickly decreases
with time. Since the particle motion is slow compared to
defect motion, the defects are trapped by particles in the
early stage (~t & 10). In this stage, most defects are strongly
elongated and entangled complicatedly. Disclination lines,

which are shared by particles far apart, shrink to lower the
elastic energy: This induces hydrodynamic motion of par-
ticles (see below). Particles sharing a defect can interact
even when there exist other particles between them. This
means that the interaction mediated by a disclination line
depends upon the topology of the disclination line: this
leads to an intrinsically nonadditive nature, which is
stronger than for the case of localized defects. Shrinking
of defects while keeping their topology results in the for-
mation of clusters of particles bound by disclination lines.
In this way, the topologically arrested metastable structures
are kinetically selected as a result of the orientational
ordering from an isotropic state, despite that they are in a
high energy state.

The elastic force (or tension) acting on a disclination
line arises not only from the line itself, but also from a
viscous drag force to particles trapped. When the elongated
defect line cannot support the tension, it is disconnected in
the process of the shortening and isolated Saturn-ring
defects are formed around the individual particles. Such

FIG. 2 (color online). The aggregation process of particles
immersed in a liquid crystal. A simulated box (643) includes
50 particles of ~a � 3:5 (� � 3:43%). Particles bound by dis-
clination lines are drawn as red ones.

FIG. 3 (color online). Time development of g�r�. The inset
shows a sheetlike planar aggregated structure composed of seven
particles bound by a single-stroke defect loop.
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particles then interact with each other via the quadrupolar
interaction and form configuration (a) in Fig. 1(a) (~t �
1000). We note that a population of such isolated Saturn-
ring defects is higher for a more dilute dispersion. This is
because the stronger tension acts on disclination lines due
to a larger average interparticle distance, which leads to
more frequent disconnection of disclination lines. For ex-
ample, a rather few topologically arrested structures exist
in the late stage for the volume fraction of � � 3:43% [see
red particles in Fig. 2 (~t � 1000)].

The formation process of the two types of defect struc-
tures can be clearly seen in the time development of the
radial distribution function of particles, which is calculated
as g�r� �

P
����r� jr� � r�j�=�4
r

2�r��. For ex-
ample, Fig. 3 shows the temporal change of g�r� for a
rather dense colloidal dispersion, which contains 125 par-
ticles (its volume fraction is 8.56%). g�r� has two growing
peaks around r=�2a� 	 1:1 and 1.4, which correspond to
configuration (a) and (b) in Fig. 1, respectively. This
double-peak feature reflects the peculiar aggregation pro-
cess of particles suspended in a nematic liquid crystal,
which is driven by the two types of attractive interactions.

Here we stress that to properly treat the effect of hydro-
dynamic drag force and the resulting tension-induced dis-
connection of a disclination, solving the director field of a
nematic solvent with hydrodynamics is essential. In a
nematic liquid crystal without particles, an inhomogeneous
director field with defects can be relaxed to a homogeneous
one only via the local rotation of the director. Thus, the
defect motion accompanies rather localized flow, which is
induced by flow-orientation coupling effect [25]. When it
contains particles, however, disclination lines are pinned
by particles due to the topological constraint. In this case,
particles are transported hydrodynamically to reduce the
stored elastic energy. Thus, we may say that the hydro-
dynamic flow is induced not only by shrinking disclination
lines alone, but also by the entire deformed director field
around the particles: particle-mediated delocalization of
nematohydrodynamic interactions.

In sum, we proposed a new type of a defect structure,
which binds more than two particles. The interaction de-
pends upon the topology of a disclination line binding
particles, which is further affected by aggregation history.
Such a defect structure has not been reported experimen-
tally. One of the possible reasons for this is that particles
accompanying Saturn rings are very small for usual con-
ditions [e.g., 2a & 600 nm for W > 10�4 N=m [4]; see
also [30] ]. Although direct observation of the defect struc-
ture may not be so easy, we hope that its existence will be
experimentally confirmed (directly or indirectly) in the
near future.
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