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We have investigated the fractional quantum Hall states of Dirac electrons in a graphene layer in
different Landau levels. The relativistic nature of the energy dispersion relation of electrons in graphene
significantly modifies the interelectron interactions. This results in a specific dependence of the ground
state energy and the energy gaps for electrons on the Landau-level index. For the valley-polarized states,
i.e., at v = 1/m, m being an odd integer, the energy gaps have the largest values in the n = 1 Landau
level. For the valley-unpolarized states, e.g., for the 2/3 state, the energy gaps are suppressed for n = 1 as
compared to those at n = 0. For both n = 1 and n = 0, the ground state of the 2/3 system is fully valley-

unpolarized.
DOI: 10.1103/PhysRevLett.97.126801

A two-dimensional electron system in a single layer of
graphite (graphene) is known to exhibit many remarkable
properties. From the band structure studies [1], it was
established early on that, to a good approximation, the
energy dispersion of electrons in graphene is linear near
the points at the corners of the Brillouin zone where the
valence band and the conduction band meet. As a conse-
quence, the low-energy excitations follow the Dirac-Weyl
equations for massless relativistic particles [2]. In an ex-
ternal magnetic field, the electron system also shows
unique properties that are different from those of the
standard nonrelativistic electron systems [2—4]. Recent
experimental demonstration of some of those properties,
in particular, the discovery of the integer quantum Hall
effect [5,6] that was predicted in earlier theoretical works
[7], has caused intense interest in the electronic properties
of the Dirac electrons in graphene [8]. However, effects of
electron correlations in this system have not been reported
yet. In this Letter, we report on the nature of the fractional
quantum Hall states of Dirac electrons in graphene.

A unit cell of the two-dimensional (2D) graphene honey-
comb lattice contains two carbon atoms, say, A and B. The
dynamics of electrons in graphene is described by a tight-
binding Hamiltonian with the nearest-neighbor hopping.
In the continuum limit, this Hamiltonian generates the
band structure with two 7r bands, and the Fermi levels
are located at two inequivalent points, K = (27/a) X
(1/3,1//3) and K' = (27/a)(2/3,0), of the first
Brillouin zone, where a = 0.246 nm is the lattice constant.
Near the points K and K’, the electrons have a linear Dirac-
Weyl (“relativistic””) type dispersion relation [1,2].
Finally, in the continuum limit, the electron wave function
is described by the 8-component spinor ¥, ., where s =
+1/2 is the spin index, k = K, K’ is the valley index, and
a = A, B is the sublattice index. Without the spin-orbit
interaction [9—11], the Hamiltonian is described by two
4 X 4 matrices for each component of the electron spin. In
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the presence of a magnetic field perpendicular to the
graphene plane, the Hamiltonian matrix has the form

0 T — Iy 0 0

_ Y| 7 tim, 0 0 0
j{_ﬁ 0 0 0 m +im, |

0 0 T — Iy, 0

(D

where 7 = p + eg/ ¢, p is the two-dimensional momen-

tum, A is the vector potential, and vy is the band parameter.
The ordering used for the basis states in the noninteracting
Hamiltonian is (K, A; K, B; K', A; K', B). The eigenfunc-
tions of the Hamiltonian are specified by the Landau-level
index n = 0, =1, £2, ... and the intra-Landau-level index
m that is gauge dependent. Each Landau level is fourfold
degenerate due to the spin and valley degrees of freedom.
The corresponding wave functions for an electron in the
two valleys K and K’ are described by

sgn(n)i" =1 by,

inl
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where C, = 1 for n = 0 and C, = 1/+/2 for n # 0. Here
¢, is the standard Landau wave function for a particle with
nonrelativistic parabolic dispersion relation in the nth
Landau level. From Egs. (2) and (3), it is clear that a
specific feature of the relativistic dispersion law is the
mixing of the nonrelativistic Landau levels. This mixture
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is present only for n # 0 and strongly modifies the inter-
electron interaction within a single Landau level.

In what follows, we study the partially occupied Landau
levels with fractional filling factors. Partial occupation of
the Landau levels is realized by doping of the graphene
layer. Experimentally, different filling factors of the
Landau levels are achieved by varying the applied mag-
netic field at a fixed electron concentration. In this case, the
ground state of the system and the excitation spectrum are
fully determined by the interelectron interactions. For the
nonrelativistic case, this results in the incompressible frac-
tional quantum Hall effect (FQHE) states at the fractional
filling factors [12,13]. Properties of these states are com-
pletely described by Haldane’s pseudopotentials V,, [14],
which are the energies of two electrons with relative an-
gular momentum m. The pseudopotentials for the nth
Landau level can be presented as

o0 (] N
Vi = [ L aV@IF @ L T, @
0 2

where L,,(x) are the Laguerre polynomials, V(g) =
2me?/(klq) is the Coulomb interaction in the momentum
space, k is the dielectric constant, / is the magnetic length,
and F,(g) is the form factor corresponding to the nth
Landau level. For relativistic electrons, the form factor is
given by the expression [15]

2

Fosolq) = %[L(q;) L, (q;)} ©)

while for the nonrelativistic particles the form factors in
Eq. (4) are F,(qg) = L,(¢?/2). This means that the inter-
electron interactions for the relativistic and nonrelativistic
electrons are the same for n = 0 and are different for n > 0
[15]. In what follows, all energies are expressed in units of
the Coulomb energy &, = e?/«l.

In Fig. 1, we compare the pseudopotentials calculated
from Eq. (4) for the relativistic and the nonrelativistic
cases. For the relativistic electrons [Fig. 1(a)], we notice
a clear suppression of the pseudopotential for n = 1 as
compared to that at n = 0, only for m = 0, i.e., when both
electrons are at the same spatial point. For all other m, we
have the inequality V,(,ll ) > V,S? ) This is different from the
nonrelativistic case, where the pseudopotential is sup-

Folg) = Lo("—z), 5)

pressed also for m =1, i.e., Vil) < Vio). We also see in
Fig. 1(a) that, although the relativistic wave function at
n =1 is the “mixture” of the n = 0 and n = 1 nonrela-
tivistic wave functions, the relativistic pseudopotential is
not the average of the corresponding nonrelativistic pseu-
dopotentials. This is clearly seen for m = 1, where the
relativistic pseudopotential at n = 1 is larger than the non-
relativistic one for both n = 0 and n = 1. In Fig. 1(b), the
relativistic pseudopotentials are shown for different
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FIG. 1. The pseudopotentials [Eq. (4)] as a function of the

relative angular momentum (a) for relativistic and for nonrela-
tivistic 2D electrons in the first two Landau levels and (b) for
relativistic electrons in various Landau levels.

Landau levels. Here the special case is m = 1, where the
dependence of the pseudopotential on the Landau-level
index is nonmonotonic; viz., the pseudopotential has the
maximum value at n = 1. At all of the other m values, the
trend is the same as for the nonrelativistic case; i.e., for
m = (0 the pseudopotential decreases with increasing n,
while at m > 1 the pseudopotentials increase with n.
With the pseudopotentials for Dirac electrons at hand,
we now evaluate the energy spectra of the many-electron
states at fractional fillings of the Landau level. The calcu-
lations have been done in the spherical geometry [14] with
the pseudopotentials given by Eq. (4). The radius of the
sphere R is related to 25 of magnetic fluxes through the
sphere in units of the flux quanta as R = /SI. The single-
electron states are characterized by the angular momentum
S and its z component S,. For a given number of electrons
N, the parameter S determines the filling factor of the
Landau level. Because of the spherical symmetry of the
problem, the many-particle states are described by the total
angular momentum L and its z component, while the
energy depends only on L. At first, we study the system
with the fractional filling factor » = 1/3, which corre-
sponds to the 1/3 FQHE. In the spherical geometry, the
1/3-FQHE state is realized at S = (3/2)(N — 1). If the
electron system is fully spin- and valley-polarized, then
we should expect the ground state to be in the Laughlin
state [16], which is separated from the excited states by a
finite gap. We calculated the energy spectra of a finite-size
system by finding the lowest eigenvalues and eigenvectors
of the interaction Hamiltonian matrix [17]. In these calcu-
lations, we take into account the interaction between all of
the electrons of the partially occupied Landau levels. We
have also addressed the question of polarization of the
many-particle state. We assume that at a high magnetic
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field the system is always spin-polarized. In this case,
the system can be either valley-polarized or valley-
unpolarized. Similar to the spin polarization of the standard
FQHE states, the valley polarization of the graphene sys-
tem depends on the intervalley asymmetry (same as the
Zeeman splitting for the nonrelativistic system) and filling
factor of the Landau level. Namely, if the intervalley split-
ting due to the intervalley asymmetry is large, then the
system is always valley-polarized, while otherwise the
valley polarization of the system depends on the filling
factor of the Landau level.

In Fig. 2, we show the calculated energy spectra for the
1/3-FQHE state at different Landau levels. Here the
1/3-FQHE state at the nth Landau level is defined as the
state corresponding to the 1/3 filling factor (single valley,
single spin) of the nth Landau level, while all the lower
energy Landau levels are completely occupied. Since the

relativistic pseudopotential V9 for n = 0 is the same as
for the nonrelativistic one, the 1/3 state and the corre-
sponding energy gap (in units of &.) will be the same in
both cases. The deviation from the nonrelativistic system
occurs only at higher Landau levels. In Fig. 2(a), the energy
gap of the 1/3 state at n = 1 is noticeably enhanced
compared to that at n = 0. This is a direct manifestation
of the specific dependence of pseudopotenials Vi on the
Landau-level index. Because of the asymmetry of the
electron wave functions, the spectra of the 1/3-FQHE state
is determined mainly by the relative value of V\" and V{"
pseudopotentials, which have the highest value at n = 1.
The energy spectra of the 1/3-FQHE state at n = 2, shown
in Fig. 2(b), demonstrate a strong suppression of the gap
when compared to the n = 1 and n = 0 FQHE states. We
therefore conclude that the 1/3-FQHE state in graphene is
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FIG. 2. Energy spectra of the eight-electron » = 1/3-FQHE
system, shown for different Landau levels: (a) n = 0 (stars), n =
1 (dots), and (b) n = 2. The system is fully spin- and valley-
polarized. The flux quanta is 25 = 21.

most stable at n = 1. Hence, the interelectron interaction
effects are more pronounced at n = 1. Interestingly, this
tendency is just the opposite of that of the nonrelativistic
system, where the excitation gap decreases monotonically
with increasing Landau-level index [12].

The results in Fig. 2 correspond to a completely spin-
and valley-polarized system. This polarization is achieved
at a high magnetic field due to the Zeeman splitting and the
valley asymmetry. The intervalley asymmetry has two
sources: The first one is due to interaction-induced “‘back-
scattering”’ between different valleys [15], while the sec-
ond one is due to the asymmetry in the lattice-scale
interactions within the two sublattices of graphene [18].
Since the positions of the electrons in two sublattices are
shifted, the interaction between the electrons in the differ-
ent sublattices is weaker than the interaction between the
electrons in the same sublattice. Both effects vary as (a/[),
so they become more relevant at higher magnetic fields or
at a smaller magnetic length.

The same picture holds for the other FQHE states of the
type 1/m; i.e., the state is most stable at n = 1. The new
aspects of the interaction physics arise at other filling
factors as well, when the lowest energy states are spin-
unpolarized for the nonrelativistic single-valley systems.
The simplest example is ¥ = 2/3. In this case, the ground
state of the nonrelativistic electrons is spin-unpolarized at a
small Zeeman splitting. The transition from the spin-
polarized to the spin-unpolarized ground states in a tilted
magnetic field is well established both experimentally and
theoretically for nonrelativistic electrons [13].

Here we address the problem of the polarized and un-
polarized states in the graphene system. We assume that the
Zeeman splitting is large enough so that all of the states are
spin-polarized. At the same time, the intervalley asymme-
try is small and electrons can occupy both of the valleys.
In this case, the valley-polarized and valley-upolarized
2/3-FQHE states become relevant. For a valley-polarized
system, the excitation spectra and the ground state proper-
ties of the 2/3 state are the same as those for v = 1/3 due
to the particle-hole symmetry. Similar to the 1/3 case, we
obtain numerically an enhancement of the excitation gap at
n = 1 as compared to that at n = 0. The more complicated
situation occurs for the valley-unpolarized system. First,
we compare, just as for the nonrelativistic system [19], the
energy of the ground states of the polarized and the un-
polarized systems. In the spherical geometry, the polarized
and the unpolarized states are realized for different sizes of
the sphere, i.e., for different flux quanta through the sphere.
For the 2/3-FQHE system, the polarized state occurs at
2S = 3N/2, while the unpolarized one is at 2S = 3N/2 —
1. Because of the different size of the sphere in these two
systems, the finite-size corrections to the magnetic length
should be introduced, I = (v2S5/N)'/21 [19,20].

We have calculated the ground state energies for the
valley-polarized and the valley-unpolarized graphene sys-
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FIG. 3. Energy spectra of the eight-electron v = 2/3-FQHE
system, shown for different Landau levels: n = 0 (stars) and n =
1 (dots). The system is valley-unpolarized and fully spin-
polarized. The flux quanta is 25 = 11.

tem in the n = 1 and the n = 0 Landau levels for an eight-
electron system in the spherical geometry. We found that
for both n = 0 and n = 1 the valley-unpolarized state has
the lower energy. The ground state energy per particle in
the unpolarized system is lower than that for the polarized
system by 0.073¢,. for n = 0 and by 0.053¢, for n = 1.
Therefore, the valley-unpolarized state is more favorable
for n = 0. Here the gap between the polarized and the
unpolarized states is suppressed for n = 1 as compared
to the n = 0 case. This is opposite to the completely
polarized system (Fig. 2), where the effects of interaction
are the strongest for n = 1. Suppression of the interaction
effects in an unpolarized system for n = 1 is also illus-
trated in Fig. 3, where the excitation spectra of the valley-
unpolarized system are shown for n =0 and n = 1. A
strong suppression of the excitation gaps for n =1 is
clearly visible here. The origin of this suppression can be
understood from the dependence of the pseudopotentials

™ on the relative angular momentum m in different
Landau levels. Because of the Pauli exclusion principle,
the energetic properties of the polarized state are deter-
mined only by the pseudopotentials with odd angular
momenta m = 1,3,5,.... These pseudopotentials have
the largest values for n = 1, which results in the strongest
interaction effects for n = 1, in a polarized system. For an
unpolarized system, the properties of the ground and ex-
cited states depend on all of the pseudopotentials. Since

Vi at m =0 is strongly suppressed for n = 1 as com-
pared to the n = O case, we expect a suppression of inter-
action effects in an unpolarized system in the n =1
Landau level.

In conclusion, the relativistic nature of the energy dis-
persion of electrons in the graphene plane modifies the
interelectron interactions significantly. This results in a
unique dependence of the ground state energy and the

energy gaps of the graphene systems on the Landau-level
index. For the valley-polarized states, i.e., at v = 1/m, the
FQHE gaps have the largest values for n = 1. Based on
these studies, we conclude that the FQHE at v = 1/m
should be observed experimentally for bothn = 0 and n =
1, perhaps in a higher mobility system. For the valley-
unpolarized states, e.g., for the 2/3-FQHE state, the energy
gaps are suppressed at n = 1 as compared to that for the
n = 0 level. For both n = 1 and n = 0, the ground state of
the 2/3-FQHE system is fully unpolarized. The intervalley
asymmetry will result in transitions between the valley-
polarized and the valley-unpolarized states.
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