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A unified theory of the anomalous Hall effect (AHE) is presented for multiband ferromagnetic metals
with dilute impurities. In the clean limit, the AHE is mostly due to extrinsic skew scattering. When the
Fermi level is located around anticrossing of band dispersions split by spin-orbit interaction, the intrinsic
AHE to be calculated ab initio is resonantly enhanced by its nonperturbative nature, revealing the
extrinsic-to-intrinsic crossover which occurs when the relaxation rate is comparable to the spin-orbit
coupling.
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Early experimental works on the Hall effect in ferro-
magnetic metals led a semiempirical relation of the Hall
resistivity �xy to a weak applied magnetic field H and the
spontaneous magnetization M both along the z direction;
�xy � RHH � 4�RsM with the normal and the anomalous
Hall coefficients RH and Rs, respectively [1]. This anoma-
lous Hall effect (AHE) [1] has been one of the most
fundamental and intriguing but controversial issues in
condensed-matter physics [2–7]. It has not been clarified
yet if the AHE is originated purely from extrinsic scatter-
ing or has an intrinsic contribution from the electronic band
structure, which penetrates even recent debates on the
interpretation of the experiments [8–10]. Theoretically, a
unified description of both intrinsic and extrinsic contribu-
tions is called for but has not been considered seriously. It
even reveals their nontrivial interplay and crossover and
explains the AHE in a whole region from the clean limit to
the hopping-conduction region (see Fig. 4), which are the
main goals of the present study.

The dissipationless and topological nature of the Hall
effect has been highlighted by discovery of the quantum
Hall effect [11] in two-dimensional electron systems under
a strong magnetic field. In the Středa formula [12] of
electric conductivity tensor �tot

ij � �Iij � �
II
ij , in ideal

case where the Fermi level is within the energy gap, the
Fermi-surface part �Iij vanishes and the quantum part �IIij
yields

 �TKNN
ij � ��ijle2

@

X
n

Z ddp

�2�@�2
bln�p�f�"n�p��; (1)

with the electronic charge e, the Planck constant h � 2�@,
the Fermi distribution function f�"�, and the antisymmetric
tensor �ijl [13]. We have introduced the eigenenergy "n�p�,
the Berry curvature bn�p� � rp � an�p�, and the Berry
connection an�p� � ihn;pjrpjn;pi of the generalized
Bloch wave function jn;pi with the band index n and the

Bloch momentum p. Each band has a topological integer
called the Chern number Cn � �

R d2p
�2�@�2 b

z
n�p�. Their

summation over the occupied bands determines the integer
� (Chern number) for the quantization �tot

xy � �e2=h in
insulators. Then, adiabatic semiclassical wave-packet
equations have been devised to incorporate this Berry-
curvature effect into the equations of motion [14].

Historically, Karplus-Luttinger [2] initiated an intrinsic
mechanism of the AHE in a band model for ferromagnetic
metals with the spin-orbit interaction, which coincides
with �TKNN

xy [15]. This reflects that the spin-orbit interac-
tion bears a nontrivial topological structure in the Bloch
wave functions of ferromagnets by splitting band disper-
sions, which originally cross at a certain momentum p0,
with a transfer of Chern numbers among the bands. This
phenomenon called the ‘‘parity anomaly’’ has a nonpertur-
bative nature [16], and points to an importance of the
anticrossing points with a small gap 2�0, which is identi-
fied with the spin-orbit interaction energy "SO. When the
Fermi level is located around such anticrossing of disper-
sions, as found in recent ab initio calculations for SrRuO3

[17] and bcc Fe [18], the magnitude of �TKNN
xy is resonantly

enhanced and approaches e2=h � 3:87� 10�5 ��1 in
two dimensions and e2=ha� 103 ��1 cm�1 in three di-
mensions with lattice constant a 	 4 �A [17,18].

On the other hand, adiabatic semiclassical Boltzmann
transport analyses suggest that impurity scattering pro-
duces the AHE through the ‘‘skewness’’ [3,5,7] or the
side jump [4,7]. The skew-scattering contribution diverges
in the clean limit as �skew

xy � �xxS �
2e2

ha
EF�
@
S with the

lifetime � and the Fermi energy EF. Here, S�
"SOvimp=W2�
 1� is the skewness factor, with W being
the bandwidth or the inverse of the density of states and
vimp the impurity potential strength.

A generic model that fully takes into account both the
parity anomaly associated with the anticrossing of band
dispersions and the impurity scattering can be obtained by
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expanding the Hamiltonian at a fixed pz with respect to the
momentum p measured from the originally crossing point
p0 of two dispersions;

 

Ĥ0 � Ĥimp � ��0�̂
z � �p � �̂ � ez �

p2

2m

� vimp

X
rimp

��r� rimp�; (2)

with the position r of electron, the Pauli matrices �̂ �
��̂x; �̂y; �̂z�, the unit vector ez in the z direction, and an
impurity at a position rimp. The first term corresponds to the
level splitting 2�0 � "SO of two bands at the anticrossing
momentum. The second term gives the linear dispersion
with the velocity �. The third term represents the quadratic
dispersion with an effective mass m, whose anisotropy has
been neglected since it is unimportant. This model has two
band dispersions "�;p as shown in Fig. 1. Henceforth, the
bottom of the lower band is chosen as the origin of the
energy and the bottom of the upper band denoted as Eres �
"��0� is taken as an energy unit. The model possesses the

gauge flux bz�;p � �
2�0=2�3

p with �p �
�����������������������
�2p2 � �2

0

q
[19,20]. In the case of resonance, EF 2 �Eres � 2�0; Eres�,
�TKNN
xy approaches the maximum value e2=2h. Away from

this resonance, dominant contributions from the momen-
tum region around p � 0 cancel out each other or do not
appear, leading to a suppression of �TKNN

xy � 	 �e2=h��
�"SO=EF��, where the perturbation expansion in "SO is
justified. Therefore, the present model, Eq. (2), can be
regarded as a generic continuum model for a momentum
region that gives a major contribution to the AHE. By
definition of the anticrossing, �0 does not change its sign
as a function of pz. This removes a concern that the
integration over pz might lead to a cancellation.

We employ the Keldysh formalism for nonequilibrium
Green’s functions, which has recently been reformulated
for generic multicomponent systems [21]. We consider
Green’s functions and self-energies under an applied con-
stant electric field E � �0; Ey�; Ĝ

	�";p� and �̂	
�"� with

	 � R;A;< for the retarded, advanced, and lesser compo-
nents, respectively. " and p represent the covariant energy
and momentum in the Wigner representation [21].
Ĝ	�";p� and �̂	

�"� can be expanded in Ey as

 Ĝ 	�";p� � Ĝ	
0 �";p� � e@EyĜ

	
Ey�";p� �O�E

2
y�; (3)

 

�̂	
�"� � �̂	

0 �"� � e@Ey�̂
	
Ey�"� �O�E

2
y�: (4)

Henceforth, functionals with the subscripts 0 and Ey de-
note those in the absence of and the gauge-covariant linear
response to Ey. Because of the �-functional form of the
impurity potential, the self-energies are local. ĜR;A

0 satisfies
the familiar Dyson equation,

 Ĝ R;A
0 �";p� � �"� Ĥ0�p� � �̂R;A

0 �"��
�1: (5)

The self-consistent equations for ĜR;A;<
Ey

are obtained by

expanding the Dyson equation in the electric field [21]. It is
convenient to decompose Ĝ<

Ey and �̂<
Ey into two;

 Ĝ <
Ey
�";p� � Ĝ<

Ey;I�";p�@"f�"� � Ĝ
<
Ey;II�";p�f�"�; (6)

 

�̂<
Ey�"� � �̂<

Ey;I�"�@"f�"� � �̂<
Ey;II�"�f�"�; (7)

 

Ĝ<
Ey;II�";p� � ĜA

Ey�";p� � Ĝ
R
Ey�";p�; (8)

 

�̂<
Ey;II�"� � �̂A

Ey�"� � �̂R
Ey�"�: (9)

Ĝ<
Ey;I and �̂<

Ey;I can be self-consistently determined from
the quantum Boltzmann equation in the first order in Ey,
 

�Ĝ<
Ey;I; Ĥ0� � Ĝ

<
Ey;I�̂

A
0 � �̂R

0 Ĝ
<
Ey;I

� �̂<
Ey;IĜ

A
0 � Ĝ

R
0 �̂<

Ey;I �
i
2
�v̂y; Ĝ

A
0 � Ĝ

R
0 ��

�
i
2
���̂A

0 � �̂R
0 ��@pyĜ

A
0 � � �@pyĜ

R
0 ���̂

A
0 � �̂R

0 ��; (10)

with the velocity v̂i�p� � @piĤ0�p�, while ĜR;A
Ey

and �̂R;A
Ey

are determined from the other self-consistent equation,

 Ĝ R;A
Ey
� ĜR;A

0 �̂R;A
Ey Ĝ

R;A
0 �

i
2
�ĜR;A

0 v̂y�@"Ĝ
R;A
0 �

� �@"Ĝ
R;A
0 �v̂yĜ

R;A
0 �: (11)

We can exactly calculate the self-energies �̂R;A
0 and �̂R;A;<

Ey

up to the nimp-linear terms by means of the T-matrix
approximation;
 

�̂R;A
0 �"� � nimpT̂

R;A
0 �"�; (12)

 T̂ R;A
0 �"� � vimp

�
1� vimp

Z d2p

�2�@�2
ĜR;A

0 �";p�
�
�1
; (13)

for the zeroth-order in Ey and

 �̂<
Ey;I
�"� � nimpT̂

R
0 �"�

Z d2p

�2�@�2
Ĝ<
Ey;I�";p�T̂

A
0 �"�; (14)

 �̂ R;A
Ey
�"� � nimpT̂

R;A
0 �"�

Z d2p

�2�@�2
ĜR;A
Ey
�";p�T̂R;A0 �"�;

(15)

 0  0

p

Eres

2∆

ε σ
(p

) ε−(p)ε+(p)

0
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c

FIG. 1 (color online). Energy dispersions for Ĥ0 in Eq. (2).
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for the first order in Ey. We solve Eqs. (5), (12), and (13)

self-consistently to obtain ĜR;A
0 and �̂R;A

0 . Next, they are
plugged into Eqs. (10) and (14) to solve Ĝ<

Ey;I and �̂<
Ey;I

self-consistently. ĜR;A
Ey

and �̂R;A
Ey are obtained from

Eqs. (11) and (15), and hence Ĝ<
Ey;II through Eq. (8). The

conductivity tensors are calculated from
 

�Iij � �
e2
@

2�i

Z d2p

�2�@�2
Tr�v̂i�p�Ĝ

<
Ej;I�EF;p��; (16)

 �IIij � e2
@

Z d"
2�i

Z d2p

�2�@�2
Tr�v̂i�p�Ĝ

<
Ej;II�";p��f�"�;

(17)

with i, j � x, y. Equations (16) and (17) are along the same
spirit as the Středa formula [12]: this approach provides the
diagrammatic treatment for the Středa formula [21].
Effects of the vertex corrections to Ĝ<

Ej;II cancel each other,
and hence we can regard �IIxy as an intrinsic contribution.
The Fermi-surface contribution �Ixy suffers from a vertex
correction. While the intraband matrix elements corre-
spond to the conventional description of both �xx and
�xy based on the scattering events, the interband ones
contain an intrinsic contribution to the AHE as a part of
the Berry-curvature term [22] and is generically expressed
as
 

�Iint
ij � ��ijl

e2
@

2

Z dp

�2�@�d
X
n;n0
�"n�p� � "n0 �p��@"f�"n�p��

� Im�hnpjrpjn0pi � hn0pjrpjnpi�l: (18)

Figure 2(a) shows the numerical results on �tot
xy � �Ixy �

�IIxy against the Fermi energy EF and the Born scattering
amplitude @=� � nimpv

2
impm for a typical set of parame-

ters, �0 � 0:1, 2mvimp � 0:6, 2m�2 � 3:59, and the en-
ergy cutoff is taken as Ec � 3:0 in an energy unit of
Eres � 1:0 [23]. In the clean limit @=�! 0, �tot

xy diverges
in accordance with the skew-scattering scenario. The
strength of the divergence is proportional to EF in the
low electron-density limit, and the sign is inverted around
EF � "��0� � Eres � 2�0. The sign of the skew-
scattering contribution also changes by the sign change
of vimp. Figure 2(b) shows the intrinsic contribution �int

xy

calculated by imposing �̂R;A;<
Ey � 0 for the same set of

parameters. Under the resonant condition for EF, �int
xy

becomes of the order of e2=2h. With increasing @=�, it
gradually decreases solely due to damping of
quasiparticles.

By contrast, with increasing @=�, the extrinsic skew-
scattering contribution rapidly decays (Fig. 3), reflecting
that it originates purely from intraband processes and
hence the skewness factor S remains of the order of
"SOvimp=W2. In moderately dirty cases, the total conduc-
tivity nearly merges into the intrinsic value: there appears a

crossover from the extrinsic regime to the intrinsic as @=�
increases. Especially in the resonant case shown in
Fig. 3(b), the intrinsic contribution is significantly en-
hanced and the extrinsic-to-intrinsic crossover occurs at
@=�� "SO. For a small ratio of "SO=EF � 10�3–10�2

[17,18], dominance of the intrinsic AHE is realized within
the usual clean metal. In reality, the total Hall conductivity
is the sum of the contributions from all over the Brillouin
zone. Since skew-scattering contributions from other mo-

σσ

τ

σ

τ

σ

FIG. 2 (color). (a) The total anomalous Hall conductivity �tot
xy

against EF and @=� in an energy unit of Eres � 1:0. (b) The
intrinsic contribution �int

xy for the same parameter values. Note
the difference of the scales for �xy in (a) and (b).

τ

σσ

σ

σ

σσ

σ

τ

σσ

σ

τ

σ
σ

FIG. 3 (color online). �tot
xy and �int

xy as a function of @=� for the
same parameter values as Fig. 2 with EF � 0:5, 1.0, and 1.5
for (a), (b), and (c), respectively.
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mentum regions are always subject to a similar rapid
decay, the above extrinsic-to-intrinsic crossover still occurs
unless contributions from all the anticrossing regions of
band dispersions are mutually canceled out by accident.

Figure 4 shows a logarithmic plot of �xy against �xx for
the same set of parameters as Fig. 3(b) except for the
impurity potential strength vimp, which is varied for differ-
ent curves. In the clean limit, the curves nicely follow
�xy / �xx and the ratio �xy=�xx is proportional to vimp

for a fixed �. As �xx � 2�e2=h�EF�=@ decreases with
decrease in �, the relation exhibits an upward deviation
from the linear one, signaling the crossover to the intrinsic
regime. A smaller value ofvimp enlarges the region of the
constant behavior of �xy. (Note that we change nimp to
control @=�.) Careful experiments are required to test the
prediction of the crossover at low temperatures. The
magnitude of �xy in the intrinsic regime is consistent
with experimentally observed values �xy � 102 �

103 ��1 cm�1 in a �xy-constant region of Fe- and Ni-
based dilute alloys [1], and SrRuO3 and metallic foils
[24]. A further decrease of � again changes the scaling
behavior to �xy / �

1:6
xx , which almost agrees with

recent experiments on Nd2�Mo1�xNbx�2O7 [25] and on
La1�xSrxCoO3 [24]. This exponent approximates to the
value expected for the normal Hall effect in the hopping-
conduction regime [26].

Now the source of the confusion over decades is clear.
The skew-scattering contribution, though it is rather sensi-
tive to details of the impurity potential and band structure,
can be larger than e2=h in the superclean case @=�
 "SO,
but decays for "SO < @=�. The side-jump contribution is
smaller and of the order of �e2=h��"SO=EF� [7]. Therefore,
the intrinsic one, which is of the order of e2=h under the
resonant condition, is dominant over a wide range of the
scattering strength "SO < @=� < EF (clean case). Although
Luttinger reconsidered the Karplus-Luttinger theory [2]
and gave an expansion of �xy in vimp, including the
skew-scattering contribution as well [5], it fails to reveal
the above crossover in the space of EF, "SO and @=�.

In conclusion, we have shown that the AHE is deter-
mined by the intrinsic mechanism when (i) the Fermi level
is located around an anticrossing of band dispersions in the
momentum space, (ii) consequently �xy � e2=�ha� �
103 ��1 cm�1, and (iii) the resistivity �xx is larger than
�ha=e2��"SO=EF� � 1–10 
� cm. With these conditions,
first-principle calculation can give an accurate prediction
of �xy. The present work resolves the long-standing con-
troversy on the mechanism of the AHE in a whole region.
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