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We show that it is possible to topologically induce or quench the Kondo resonance in the conductance
of a single-molecule magnet (S > 1=2) strongly coupled to metallic leads. This can be achieved by
applying a magnetic field perpendicular to the molecule easy axis and works for both full- and half-integer
spin cases. The effect is caused by the Berry-phase interference between two quantum tunneling paths of
the molecule’s spin. We have calculated the renormalized Berry-phase oscillations of the Kondo peaks as a
function of the transverse magnetic field as well as the conductance of the molecule by means of the poor
man’s scaling method. We propose to use a new variety of the single-molecule magnet Ni4 for the
experimental observation of this phenomenon.
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The quantum tunneling of the spin of single-molecule
magnets (SMMs), such as Mn12 [1,2] and Fe8 [3,4], has
attracted a great deal of interest. These molecules have a
large total spin, strong uniaxial anisotropy, and interact
very weakly when forming a crystal. They have already
been proposed for high-density magnetic storage as well as
quantum computing applications [5]. Yet, there is much to
explore in their fundamental properties. For instance, re-
cent measurements of the magnetization in bulk Fe8

samples (see Ref. [6]) have observed oscillations in the
tunnel splitting �Em;m0 between states Sz � m and m0 as a
function of a transverse magnetic field at temperatures
between 0.05 K and � 0:7 K. Using a coherent spin-state
path integral approach, it has been shown that this effect
results from the interference between Berry phases carried
by spin tunneling paths of opposite windings [7–9], a
concept also applicable to transitions involving excited
states of SMMs [10].

A new approach to the study of SMMs opened up
recently with the first observations of quantized electronic
transport through an isolated Mn12 molecule [11]. One
expects a rich interplay between quantum tunneling, phase
coherence, and electronic correlations in the transport
properties of SMMs. It has been argued that the Kondo
effect would only be observable for SMMs with half-
integer spin [12] and therefore absent for SMMs such as
Mn12, Fe8, and Ni4, where the spin is integer. Here we show
that this prediction is only valid in the absence of an
external magnetic field. Remarkably, even a moderate
transverse magnetic field topologically quenches the two
lowest levels of a full-integer spin SMM, making them
degenerate. The same Berry-phase interference also affects
transport for SMMs with half-integer spin: In that case,
sweeping the magnetic field will lead not to one but a
series of Kondo resonances.

It is interesting to contrast the Kondo effect in a SMM
with that observable in a lateral quantum dot with a single
excess electron [13,14], in a single spin-1=2 atom [15], or

in a single spin-1=2 molecule [16]. In those cases, at zero
bias the Kondo effect is damped by an external a magnetic
field because the degeneracy of the two spin states is lifted
[17]. In the case of SMMs, the Berry-phase oscillations of
the tunnel splitting �Em;m0 leads to oscillation of the
Kondo effect as a function of H?, the transverse magnetic
field amplitude. This means that the Kondo effect is ob-
servable at zero bias for all values of H?;0 such that
�Em;m0 �H?;0� � 0. Notice that at a finite bias the Kondo
effect in a quantum dot in the presence of a magnetic field
of magnitude H can be restored by tuning the bias to eV �
�g�BH (see Ref. [13]). For SMMs, however, the interfer-
ence between the Berry phases accumulated by the mole-
cule’s spin makes the distance between the split Kondo
peaks, which is equal to eV � ��Em;m0 , oscillate as a
function of H?.

Consider a typical spin Hamiltonian of a SMM in an
external transverse magnetic field H?:
 

H spin ��AqS
2
q;z�

Bq
2
�S2
q;� � S

2
q;���

B4;q

3
�S4
q;� � S

4
q;��

�
1

2
�h�?Sq;� � h?Sq;��; (1)

where the easy axis is taken along z, Sq;� � Sq;x � iSq;y,
the integer index q denotes the charging state of the SMM,
and h? � g�BH?. Note that the transverse magnetic field
lies in the xy plane. In this Hamiltonian, the dominant
longitudinal anisotropy term creates a ladder structure in
the molecule spectrum where the j �mqi eigenstates of Sz
are degenerate. The weak transverse anisotropy terms
couple these states. The coupling parameters depend on
the charging state of the molecule. For example, it is
known that Mn12 changes its easy-axis anisotropy constant
(and its total spin) from A0 � 56 �eV (S0 � 10) to A�1 �
43 �eV (S�1 � 19=2) and A�2 � 32 �eV (S�2 � 10)
when singly and doubly charged, respectively [18].

The spin tunneling between the states jmqi to j �mqi,
with jmqj � Sq, can occur both clockwise and counter-
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clockwise around the x axis. These two paths interfere with
each other, which leads to Berry-phase oscillations [9,10].
Experiments with Ni4 show that B4;q�0 � �0:003 K; i.e.,
B4;0 is negative. In this case, in order to see the Berry-phase
oscillation, the transverse magnetic field must be applied
along angles that depend on the values of Bq and B4;q [10].
In Fig. 1 we show the Berry-phase oscillations of the tunnel
splitting calculated for Ni4 for two of such special orienta-
tions based on data from Ref. [19].

In order to show how these oscillations impact transport
through the SMM, we first evaluate the Kondo effect for
zero bias at the zero points, where the states jmqi and
j �mqi are pairwise degenerate for all mq. In order to
consider the Kondo effect for SMMs, we need to add to
the spin Hamiltonian in Eq. (1) the Kondo Hamiltonian
[17]
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X
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1
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 yks ks

�
X
mq

�
J
�mq�
z sz�

�mq�
z �

1

2
J
�mq�

? �s��
�mq�
� � s��
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� �

�
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(2)

where s �
P
k;k0;s;s0 

y
ks��ss0=2� k0s0 and the operators  yks

( ks) create (annihilate) electronic states in the leads with
momentum k, spin s, and energy �k. ��mq� is the
pseudospin-1=2 operator acting on the states jmqi and

j �mqi. We define �
�mq�
� � �

�mq�
x � i�

�mq�
y � j �mqi	

h
mqj and �
�mq�
z � �jmqihmqj � j �mqih�mqj�=2. The

spin-flip terms in Eq. (2) induce the Kondo resonance.
The exchange part, H ex [the second term on the right-
hand side of Eq. (2)] can be derived from a generalized
Anderson’s impurity model that takes into account the
charging dependence of the total spin of the SMM. When
the charging energy U is much larger than the tunneling
matrix element t between the leads and the SMM, the
exchange coupling can be derived in second-order pertur-
bation theory by means of a Schrieffer-Wolff transforma-
tion [20], yielding
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where U is the charging energy. Notice that the coupling is

antiferromagnetic and J
�mq�
z � J

�mq�

? . Since J
�mq�

? depends
on the tunnel splittings �Emq�1;�mq�1

and �Emq�1;�mq�1

(which correspond to one charge added and removed
from the SMM, respectively), the Kondo exchange cou-

pling is strongly anisotropic, which confirms the result
obtained in Ref. [12].

The transverse anisotropy terms in Eq. (1) mix the
states jmqi. Since jAj � jBj, jB4jS

2, the eigenstates are

nondegenerate and of the form jm���q i � �jmqi �

j �mqi�=
���
2
p

. However, at the zero points the SU(2) sym-
metry is restored, yielding degenerate eigenstates of the
form j �mqi. The Kondo Hamiltonian in Eq. (2) opens up
transition paths between pairs of degenerate states jmqi and
j �mqi and these paths depend on temperature. This leads
in general to multipath (but single-channel) Kondo corre-
lations at T > TK. At T � 0, however, only the j � Si
states contribute to the Kondo effect. The unusual feature
of Eq. (2) is that the total spin is not conserved. After a
spin-flipping event, the excess angular momentum L �
2mq�1@ must be absorbed by orbital (and possibly nuclear)
degrees of freedom in the SMM and then be transferred to
the molecule as a whole. Since the kinetic energy of a
rotation of tens of @ corresponds to a few mK for a typical
SMM, the excess orbital angular momentum will be re-
laxed by thermal fluctuations in the metallic contacts. The
critical assumption we make is that the excess angular
momentum is transferred from spin to orbital (and possibly
nuclear) degrees of freedom fast enough to allow for the
Kondo state to be formed.

Our analysis employs the standard poor man’s scaling
[21] to renormalize the effective exchange coupling con-
stants Jz, J�, J�, and the g factor. In order to make the
discussion self-contained, we present the main steps of
the derivation. We start by calculating the renormali-
zation flow at the zero points where the Kondo effect is
observable for zero bias. It is reasonable to assume that
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FIG. 1. Berry-phase oscillations of the spin tunnel splitting in
the Ni4 spin cluster of Ref. [19] at different temperatures (S �
4). The anisotropy constants are A � �1:33 K, B � 0:034 K,
and B4

4 � �0:003 K. �ES;�S is calculated by an exact diago-
nalization for ’ � 33:5 and ’ � 40:75. As T approaches TK,
the renormalization of the g factor increases, an effect that can
be verified experimentally. The bare g factor is g � 2:2 for Ni4.
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hx;0;n � TK, except when n � 0 for half-integer spins. The
total Hamiltonian for the combined SMM and leads system
reads (we will suppress the index q hereafter)
 

H tot �
X
m�0

�
�m��

�m�
z �2 �

1

2
��m��~h�?��m�� � ~h?��m�� �

�

�
X
k;s

�k 
y
ks ks �H ex; (4)

where �m is the eigenvalue of jmi and j �mi at the
zero points, j~h?j is the effective Zeeman splitting
between �e�i’=2jmi � ei’=2j �mi�=

���
2
p

and �e�i’=2jmi �
ei’=2j �mi�=

���
2
p

, and ��m� � 1� �0j
�m�
? =2 due to the

Knight shift, with �0 denoting the density of states of the
itinerant electrons. The Zeeman term for the itinerant
electrons is absent in Eq. (4) because at finite values of
h?;0;n one has to cut the edges of the spin-up and spin-down
bands in the leads to make them symmetric with respect to
the Fermi energy [17]. Let us call D the resulting band
width. The Hamiltonian remains invariant under renormal-
ization group transformations. Using a one-loop expansion
(second-order perturbation theory), we obtain the flow
equations

 

dJ�m��
d�

� �2�0J
�m�
� J�m�z ;

dJ�m�z

d�
� �2�0J

�m�
� J�m�� ; (5)

 

d��m�
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�
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0

2
�J�m�� � J

�m�
� �J

�m�
z ; (6)

where � � ln� ~D=D� and ~D is the rescaled band width.
Dividing Eqs. (5) and integrating by parts gives �J�m�z �2 �

�J�m�? �
2 � C�m�, where C�m� is a positive constant [21]. The

exchange coupling constants always flow to an antiferro-
magnetic state because J�m�z > 0, but at the end of the flow
the coupling tends to become isotropic. Solving Eqs. (5)
yields

 

1

2�0

���������
C�m�
p arctanh

� ���������
C�m�
p

J�m�z

�
� ln

� ~D
TK

�
: (7)

The solution for J�m�? is determined by J�m�z ������������������������������
�J�m�? �

2 � C�m�
q

. The flow stops at ~D � !� T > TK.
The result of the flow for � is presented in Fig. 2.

We are now ready to calculate the linear conductance
through the SMM, which is given by the formula [17]

 G � G0

Z
d!��

df
d!
�
�2�2

0

16

P
m
e��m=T jA�m��!�j2

P
m
e��m=T

; (8)

where G0 is the classical (incoherent) conductance of the
molecule. At the end of the flow the transition amplitude
A�m� can be calculated in first-order perturbation theory,
and one finds that ��m�~D�!

� 1� �0J
�m�
?;!=2 and

 A �m�
~D�!
� J�m�?;! �

���������
C�m�

p �
�!=TK�2�0

�������
C�m�
p

�!=TK�
4�0

�������
C�m�
p

� 1

�
: (9)

Substituting! by T and inserting Eq. (9) into (8), one finds
that the conductance diverges as T ! TK, signaling the
onset of the Kondo effect. Since C�m� > 0 the singularity in
Eq. (9) differs from the usual logarithmic behavior. The
Kondo effect causes a fundamental change in the SMM
behavior: All the zero points of the Berry-phase oscillation
get rescaled by the g-factor renormalization: b�m�?;0;n �

h?;0;n=�
�m�
~D�T

. Thus, the zero points become dependent on
the contributing states jmi and j �mi. This result indicates
that the period of the Berry-phase oscillations becomes
temperature dependent as T is lowered toward TK.
Remarkably, the scaling equations can be checked experi-
mentally by measuring the renormalized zero points of the
Berry phase. Moreover, due to the scale invariance of the
Kondo effect, the period of oscillations should follow a
universal function of T=TK.

The necessary conditions for observing these oscilla-
tions are a large enough tunnel splitting and a strong
coupling between the SMM and the leads. In regard to
the former, a new Ni4 single-molecule magnet with S � 4
has been synthesized [19] with �ES;�S � 0:01 K or larger,
depending on h?. However, the two recent reports of
transport through a SMM [11] show that the electrical
contacts between the SMM and the leads is rather poor
and would need to be improved in order to bring TK to
accessible values.

Let us now study the linear conductance for nonzero
bias, eV � �L ��R � 0. We focus on the low-
temperature regime, where we can substitute �df=d!
by ���!� eV=2� � ��!� eV=2��=2 in Eq. (8). We con-
sider the situation where one moves from the zero points
b?;0;n to b? � b?;0;n � �b?, with �b? � �b?;0;n�h?. If
jeVj � �Em;�m�b?� � TK, the transmission amplitude is
well approximated by Eq. (9). On the other hand, for
jeVj � TK � �Em;�m�b?� the transmission amplitude
is given by AeV � J?;eV . For the case jeVj �
�Em;�m�b?� � TK we can expand A ~D�maxfT;�Em;�m�b?�g

up to second order in perturbation theory at the flow end,
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FIG. 2. The renormalization of the g factor due to the Knight
shift. As an estimate, we used �0J� � �0Jz � 0:15 [15].

PRL 97, 126601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
22 SEPTEMBER 2006

126601-3



yielding

 A �m�
~D
�!� � J�m�

?; ~D
� �0J

�m�
?; ~D

J�m�
z; ~D

lnj
!� ~D� eV=2

!� ~D� eV=2
j;

(10)

where the integration limits account for the asymmetric cut
of the bands. Keeping terms up to third order in J�m�~D

and
combining the results for zero and nonzero bias, we obtain

 

G
G0
�
�2�2

0

16
J2
?; ~D

�
�eV;0 � �0Jz; ~D ln

�
�Em;�m

jjeVj � �Em;�mj

��
;

(11)

which agrees with Ref. [22]. The two split Kondo peaks
appear at jeVj � �Em;�m�b?�. Thus, the distance between
the two peaks oscillates with magnetic field, following the
renormalized periodic oscillations of the tunnel splitting
�Em;�m�b?�.

These results can be extended to the strong-coupling
Kondo regime, namely, at T � 0, where only the two
lowest-lying states jSi and j � Si contribute to the Kondo
effect. Similarly to the spin S � 1=2 case, our calculations
yield G�T � 0� � G0

2

P
ssin2�s � G0 at the zero points of

the Berry-phase oscillation, where j�sj � �=2 is the scat-
tering phase shift in the unitary limit. In order to find the
zero points of the Berry-phase oscillation, one must em-
ploy a more accurate approach, such as the numerical
renormalization group technique [23]. However, since the
ground state of the Kondo model given by Eq. (2) has
SKondo � Sq � 1=2 due to the spin screening provided by
the itinerant electrons, we conclude that the spin parity of
the SMM effectively changes from even to odd or from odd
to even when one goes from the high- to the low-
temperature Kondo regimes. This means that, e.g., Ni4
should behave as if SKondo � 7=2 at T � TK.

To help guide the experimental effort on this
problem, we provide some estimates for the Kondo
temperature using the expression TK �
D exp��arctanh�

���������
C�S�
p

=Jz�=2�0

���������
C�S�
p

� derived from
Eq. (7). Using �0Jz � 0:15 (similar to Ref. [16]) and
setting � equal to the level spacing in the SMM, D �
jA�S2 � �S� 1�2�j � 9:3 K, we obtain TK � 1:2 K in Ni4
for the tunneling between the ground statesm � S � 4 and
m � �S � �4. The two crucial ingredients for the experi-
mental observation in SMMs are (i) a large spin tunnel
splitting and (ii) a large tunneling amplitude between the
leads and the SMM. The first requirement is satisfied by
Ni4. The second one remains an experimental challenge. In
the case of Mn12, �ES;�S�H? � 0� � 10�10 K for the
ground state tunneling, which leads to a negligible small
Kondo temperature TK. However, �E4;�4�H? � 0� �
0:01 K, which leads to TK � 1 K. Unfortunately, since
the excited levels m � �4 are only populated at tempera-
tures of about 1 K, the levels m � �4 cannot be resolved
by the electrons in the leads.

In summary, we have shown that the Kondo effect in
single-molecule magnets attached to metallic electrodes is
a nonmonotonic (possibly periodic) function of a trans-
verse magnetic field. This behavior is due to Berry-phase
oscillations of the molecule’s large spin. The period of
these oscillations is strongly renormalized near the
Kondo temperature and should follow a universal function
of temperature that can be accessed experimentally. We
argue that a newly synthesized family of Ni4 SMMs meets
the requirements for such experiment.
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