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We present a time-reversible Born-Oppenheimer molecular dynamics scheme, based on self-consistent
Hartree-Fock or density functional theory, where both the nuclear and the electronic degrees of freedom
are propagated in time. We show how a time-reversible adiabatic propagation of the electronic degrees of
freedom is possible despite the nonlinearity and incompleteness of the self-consistent field procedure.
With a time-reversible lossless propagation the simulated dynamics is stabilized with respect to a
systematic long-term energy drift and the number of self-consistency cycles can be kept low thanks to
a good initial guess given from the electronic propagation. The proposed molecular dynamics scheme
therefore combines a low computational cost with a physically correct time-reversible representation,
which preserves a detailed balance between propagation forwards and backwards in time.
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Ab initio molecular dynamics based on Hartree-Fock or
density functional theory [1-9] has become an important
tool for simulations of an increasingly wider range of
problems in geology, material science, chemistry, and bi-
ology. Ab initio molecular dynamics, where the atomic
positions move along classical trajectories, can be catego-
rized in two major groups: Lagrangian Car-Parrinello mo-
lecular dynamics and Born-Oppenheimer molecular
dynamics [4—12]. The success of Car-Parinello molecular
dynamics, invented two decades ago [4], is based on its
efficient implementations and low computational cost.
However, unless a Car-Parinello simulation is performed
carefully, it may yield results different from Born-
Oppenheimer molecular dynamics [5,6,13—17]. In Born-
Oppenheimer molecular dynamics the atomic positions are
propagated by forces that are calculated at the self-
consistent electronic ground state for each instantaneous
arrangement of the ions. Born-Oppenheimer molecular
dynamics is computationally expensive compared to Car-
Parinello dynamics because of the requirement to reach a
self-consistent field (SCF) solution in each time step.
However, the number of SCF cycles and thus the computa-
tional cost can be strongly reduced by using an initial guess
for the electronic degrees of freedom p(z, ) (here repre-
sented by the electron density), which is given by an
extrapolation from previous time steps [5,8,9,18-20].
The electronic extrapolation scheme, combined with the
SCF procedure, can be seen as an adiabatic propagation of
the electronic degrees of freedom, where

p(tn+l) = SCF[p(tn)’ p(tnfl): s ] (1)

Unfortunately, this approach has a fundamental problem.
Because of the nonlinear and irreversible SCF procedure,
which in practice is never complete, the time-reversal
symmetry of the electronic propagation is broken. This
problem does not occur in Lagrangian Car-Parinello mo-
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lecular dynamics [17], where both the nuclear and the
electronic degrees of freedom can be propagated with
time-reversible Verlet integrators [21]. The main purpose
of this Letter is to show how an effective time-reversible
lossless propagation of the electronic degrees of freedom is
possible in Born-Oppenheimer molecular dynamics, de-
spite an irreversible and approximate SCF procedure.

Computational schemes using time-reversible integra-
tors give in general an energy meandering around a value
that does not systematically drift with time. This property
follows from the time-reversal symmetry, which excludes a
steady increase or decrease of the energy for a periodic
motion. Since the simulation time usually is very short
compared to the Poincaré time, i.e., the period of the
system, the total energy may still shift. Deviations in the
energy can be bounded by using numerical integrators that
exactly fulfill certain symmetries of Newtonian mechanics,
such as the symplectic condition [22]. In this Letter we
show how it is possible to drastically improve the accuracy
and the stability of Born-Oppenheimer molecular dynam-
ics by imposing the time-reversal symmetry on the propa-
gation of the electronic degrees of freedom.

The irreversibility of the electronic propagation in
Eq. (1), which also affects the integration of the nuclear
degrees of freedom, leads to a small but systematic energy
drift in the evolution of a microcanonical ensemble, with
an accumulating phase-space error. The error can be sys-
tematically reduced by improving the SCF convergence or
be removed completely by using an initial guess in the SCF
procedure that is independent of previous time steps [8,9].
Both these remedies are computationally expensive and
using an initial guess that is independent from previous
time steps often require a significantly increased number of
SCF cycles.

The basic principles for the time-reversible lossless in-
tegration of the electronic degrees of freedom is described
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here in terms of the propagation of the electron density
p(t). However, time-reversible Born-Oppenheimer trajec-
tories can be constructed by replacing the density by other
parameters governing the electronic degrees of freedom,
such as the effective single-particle potential, Hamiltonian,
density matrix, or wave functions. Our approach is there-
fore general and applicable to a large number of electronic
structure schemes based on self-consistent Hartree-Fock or
density functional theory.

A reversible propagation of the electron density p(¢) in
finite time steps of 87 (¢, = ty + ndt) can be constructed
from a lossless filter process analogous to, for example, the
lossless wavelet transform used in data compression [23].
The principle of the process, which is the key result in this
Letter, is shown in the upper part of Fig. 1. The scheme is
divided into two channels; the upper channel, with an
approximate auxiliary density (denoted by a tilde), g,,+; =
p(t,+1), is used as an initial guess for the Born-
Oppenheimer density, p,;, in the lower channel. The
Born-Oppenheimer density is given through the nonlinear,
in practice incomplete, and numerically lossy SCF proce-
dure,

Pu+1 = SCFp,11] (2

The function U(p,,) is an update filter for the propagation
of the auxiliary density,

Dni1 = U(pn) - ﬁn*l' (3)

It is easy to see that the filter process is perfectly lossless
and reversible by running the process backwards in time
with the & sign replaced by a © sign, as shown in the lower
part of Fig. 1. The scheme is therefore a bijective map
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FIG. 1. The principle behind the time-reversible lossless filter
process for propagation of the electronic density. In the forward
filter process (upper part), p,+1 = —p,—1 + U(p,) and in the
lossless backward reconstruction (lower part), —p,—; = p,+1 —
U(p,). The dual propagation with the auxiliary density p,
allows a perfect reconstruction of the self-consistent Born-
Oppenheimer density p,, despite an irreversible, incomplete,
and approximate SCF procedure.

which allows perfect reconstruction of p,,, despite the fact
that the SCF procedure is an irreversible lossy transform.

The auxiliary density g, in Eq. (3) will be close to the
self-consistent Born-Oppenheimer density p,, . if the loss-
less filter process in Fig. 1 approximates the evolution of
the density on the Born-Oppenheimer potential energy
surface. This reduces the number of SCF cycles necessary
to reach the new self-consistent density. One way to
achieve this is to construct the update filter U(p,) in
Eq. (3) from the time-reversible Verlet integrator [21]
such that

ﬁn+1 = [zpn + atzﬁn] - ﬁn—l- (4)

This integrator fulfills time-reversal symmetry since it
remains the same if we switch the sign of &f and thus
interchange p,_; with p,,;. Note that perfect lossless
reconstruction is a necessary, but not a sufficient, condition
for time-reversal symmetry. The simplest time-reversible
approximation of the acceleration p, = 9%p, /91> is to set
it equal to zero, such that

Pnt1 =200 = Pu-1- (%)
This surprisingly simple difference approximation fulfills
time-reversal symmetry, allows a perfect reconstruction
backwards in time, and avoids an unstable exponential
error growth since the characteristic equation (with p,
replaced by p,,) has no roots outside the unit circle. If the
auxiliary density p,_; in Eq. (5) is replaced by the self-
consistent Born-Oppenheimer density p,_; the propaga-
tion scheme is identical to a linear interpolation. Below we
demonstrate how such a modification drastically affects
phase-space conservation and the energy drift.

A quite general scheme for constructing update filters
U(p,,) for efficient time-reversible integrators is given by a
least square fit of the ansatz

M
p(1) = a,t™ — p(=1), (6)
m=0

to Born-Oppenheimer densities p(t,) at N successive time
steps. A similar least square approximation, but without the
constraint of time reversibility, was recently proposed by
Pulay and Fogarasi for the extrapolation of the single-
particle Hamiltonian in a highly efficient Fock matrix
dynamics (FMD) method [8,9]. Often only 2—3 SCF cycles
are necessary in their scheme, but because of irreversibility
(discussed in terms of hysteresis by Pulay and Fogarasi), a
small but systematic energy drift occurs.

By choosing different numbers of fitted values N we can
calculate the expansion coefficients a,, in Eq. (6) and
express them in terms of previous Born-Oppenheimer
densities. For example, a least square fit using the ansatz
in Eq. (6), with M = 1 for 6 previous densities, leads to the
time-reversible approximation
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B 1
Pn+1 = E[?’O(pn + pu—a) = 3(pu-1 + pu—3) — 28p, 5]
- [)n*S' (7)

Several alternative schemes for constructing time-
reversible update filters U(p,,) are possible. For example,
we can correct the first order propagation of p,, in Eq. (5) in
its deviation from the exact self-consistent ground state
using an energy gradient or a constrained functional gra-
dient [24]. In such schemes the step length along the
gradient can be associated with the inverse fictitious elec-
tron mass in Lagrangian Car-Parrinello dynamics.

To demonstrate the time-reversible lossless Born-
Oppenheimer molecular dynamics we have implemented
the scheme in MONDOSCF [25], a suite of programs using
Gaussian basis sets for electronic structure calculations
based on self-consistent Hartree-Fock or density functional
theory. The density in the time-reversible propagation in
Egs. (5) and (6) has been replaced by the effective single-
particle Hamiltonian, i.e., in this case the Fockian. For the
nuclear coordinates a Verlet integrator was used [21].
The number of SCF cycles is measured in the number of
constructions of Hamiltonians, which is the most time-
consuming step.

Figure 2 shows the total energy as a function of time for
an F, molecule. The modification of the time-reversible
linear propagation in Eq. (5) to a linear interpolation leads
to a systematic drift in the energy. Using more SCF cycles
per time step reduces the energy drift, but it never really
disappears. As a comparison we also show the (4—2) Fock
matrix dynamics (FMD) scheme by Pulay and Fogarasi [8],
based on a second order polynomial least square fit using
four previous data points. This scheme gives, in principle, a
more accurate extrapolation, which is noticed in a smaller
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FIG. 2 (color online). The fluctuations in the total energy as a
function of time for a F, molecule using Hartree-Fock theory
with a Gaussian basis set (RHF/3-21G). The time-reversible
propagation based on Eq. (5), with the density replaced by the
effective single-particle Hamiltonian, is compared to the energy
drift using the corresponding linear interpolation from previous
time steps. The (4—2) Fock matrix dynamics (FDM) scheme by
Pulay and Fogarasi is shown as a comparison. The time step was
chosen to 6t = 0.25 fs with 2 SCF/step.

amplitude of the energy oscillations. However, there is a
systematic drift in the energy. For the time-reversible linear
integrator in Eq. (5), using only 2 SCF iterations per time
step, any energy drift was less than 10~3 Hartree/ps. The
phase space is also conserved with the time-reversible
integration, as illustrated in Fig. 3. Thus, the simulated
dynamics is physically accurate even with an incomplete
SCF convergence.

The time-reversible propagators we have found so far
have characteristic equations with all their roots on the unit
circle. Roots inside the unit circle would improve stability
but also lead to an exponential loss of memory. Because of
the perfect lossless reconstruction, any error that occurs in
the calculations will propagate throughout the simulation.
This leads to a random noise that increases with time.
Because of this noise the auxiliary density p, may slowly
move away from the self-consistent solution. This means
that it is not possible to combine long time steps with few
SCF cycles. An increased number of SCF cycles (or shorter
time steps) is in general necessary to reach a sufficiently
accurate Born-Oppenheimer density for longer simulation
times. Because of the dual filter process a conventional
error analysis does not necessarily apply and the additional
integration over the nuclear degrees of freedom further
complicates the picture. Figure 4 shows the fluctuations
in the total energy for a C,F, molecule during 1 ps of
simulation time at a temperature 7 = 500 K. The extrapo-
lation scheme in Eq. (7) was used and 3 SCF cycles per
time step were applied using Pulay’s direct inversion in the
iterative subspace (DIIS) algorithm to accelerate the con-
vergence [26,27].

The ability of a perfect reconstruction of the dynamical
data backwards in time and the local time reversibility is
kept also using approximate arithmetic, thanks to the loss-
less bijective filter process illustrated in Fig. 1. The lossless
property is therefore kept also when small elements below
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FIG. 3 (color online). Detail of the phase space during 500 fs
for one of the atoms in the F, molecule (Hartree-Fock theory
with a Gaussian basis set RHF/3-21G, 2 SCF/step). The time-
reversible propagation preserves the phase space whereas the
non-time-reversible dynamics has a small but noticeable drift.
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FIG. 4. The energy fluctuations around the average energy as a
function of time for a C,F, molecule at a temperature 7 =
500 K (Hartree-Fock theory with a Gaussian basis set RHF/3-
21G). Three SCF cycles per time step of length 6t = 0.25 fs
were used.

some drop tolerance are set to zero in the SCF optimization
of p, and in the update function U(p,,). This is potentially
important in the study of very large systems using, for
example, linear scaling electronic structure methods [28]
that in general require a lower numerical accuracy com-
pared to conventional schemes.

We have shown that an effective time-reversible propa-
gation of the electronic degrees of freedom is possible in
self-consistent Born-Oppenheimer molecular dynamics,
despite the irreversible, nonlinear, and in practice always
approximate SCF procedure. The framework for lossless
time-reversible Born-Oppenheimer molecular dynamics
may open the door to a number of different methods,
e.g., higher order symplectic integrators [22,29-32].

In summary, we have presented a scheme for time-
reversible Born-Oppenheimer molecular dynamics that
combines a low computational cost with a physically cor-
rect time-reversible propagation, which improves accuracy
and stability of the dynamics. The principle is based on a
lossless filter integration of the electronic degrees of free-
dom, where a dual propagation with an auxiliary density
allows a perfect reconstruction backwards in time of the
self-consistent Born-Oppenheimer density.
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