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The relativistic correction to the QCD static interquark potential at O�1=m� is investigated non-
perturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to
be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts
to one-fourth of the Coulombic term for bottomonium.
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Introduction.—Heavy quarkonia, i.e., bound states of a
heavy quark and antiquark [1–4], offer a unique opportu-
nity to gain an understanding of nonperturbative QCD. A
possible way of studying such systems systematically in
QCD is to employ nonrelativistic QCD (NRQCD) [5,6],
which is obtained by integrating out the scale above the
heavy quark mass m� �QCD. Further, by integrating out
the scale mv, where v is quark velocity, one arrives at a
framework called potential NRQCD (pNRQCD) [7–10],
where the static potential emerges as the leading-order
contribution, followed by relativistic corrections in powers
of 1=m. The potential at O�1=m2� contains the leading-
order spin-dependent corrections [11–13] and the velocity-
dependent potentials [14,15]. Perturbation theory may be
applied to the determination of these potentials to some
extent. However, since the binding energy is typically of
the scale mv2, which can be of the same order as �QCD due
to the nonrelativistic nature of the system, v� 1, as well
as the fact that perturbation theory cannot incorporate
quark confinement, it is essential to determine the potential
nonperturbatively. The various properties of heavy quark-
onium can be extracted by solving the Schrödinger equa-
tion with these potentials.

Monte Carlo simulations of lattice QCD offer a powerful
tool for the nonperturbative determination of the potentials,
and it is the aim of this Letter to present the simulation
result of the heavy quark potential at O�1=m�, which has
not been investigated so far on the lattice. Let us denote the
spatial position of the quark and antiquark as ~r1 and ~r2 with
the relative distance r � j ~r1 � ~r2j and the masses m1 and
m2, respectively. The potential is

 V�r� � V�0��r� �
�

1

m1
�

1

m2

�
V�1��r� �O

�
1

m2

�
; (1)

where V�0��r� is the static potential, usually obtained by
evaluating the expectation value of the Wilson loop. The
static potential is well parametrized by the Coulomb plus
linear term,

 V�0��r� � �
c
r
� �r��; (2)

where � is the string tension and � a constant [16]. On the
other hand, the nonperturbatively expected form of V�1��r�
is not yet known, but leading-order perturbation theory
yields V�1��r� � �CFCA�2

s=�4r
2� [8,19,20], where CF �

4=3 and CA � 3 are the Casimir charges of the fundamen-
tal and adjoint representations, respectively (beyond
leading-order perturbation theory, see [21]).

Procedures.—We work in Euclidean space in four di-
mensions on a hypercubic lattice with lattice volume V �
L3T and lattice spacing a, where periodic boundary con-
ditions are imposed in all directions. Writing the eigenstate
of the pNRQCD Hamiltonian at O�m0� in the 3 � 3	 rep-
resentation of color SU(3), which corresponds to the static
quark-antiquark state, as jni 
 jn; ~r1; ~r2i with the energy
En�r� [e.g., E0�r� � V�0��r�], the spectral representation of
V�1��r� is expressed as [8,9]

 V�1��r� � �
1

2

X1
n�1

h0jgE� ~ri�jni � hnjgE�~ri�j0i

��En0�
2 ; (3)

where g is the gauge coupling, E� ~ri� denotes the electric
field attached to the quark (i � 1) or the antiquark (i � 2),
and �En0 
 En � E0 is the energy gap. It is also possible
to write Eq. (3) as the integral of the electric field strength
correlator on the Wilson loop with respect to the relative
temporal distance between two electric fields [8,9]. This is,
in principle, measurable on the lattice, and the result is
reduced to Eq. (3) once the spectral decomposition is
applied by using the transfer matrix theory, and the tem-
poral size of the Wilson loop is taken to infinity [22].

In our approach, the Polyakov loop correlation function
(PLCF, a pair of Polyakov loops P separated by a distance
r) is adopted as the quark-antiquark source instead of the
Wilson loop for the reason discussed below. Let us con-
sider the field strength correlator on the PLCF,

 C�t� � hhg2E�~ri; t1� �E�~ri; t2�iic


 hhg2E�~ri; t1� �E�~ri; t2�ii� hhgE� ~ri�ii � hhgE� ~ri�ii;

(4)

where the double brackets represent the ratio of expecta-
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tion value hh� � �ii � h� � �iPP	=hPP	i, while h� � �iPP	 im-
plies that the electric field is connected to either of the
Polyakov loops in a gauge invariant way. The relative
temporal distance of two electric field operators is t �
t2 � t1.

The spectral decomposition of Eq. (4) reads [23]
 

C�t� � 2
X1
n�1

h0jgE� ~ri�jni � hnjgE� ~ri�j0ie���En0�T=2

� cosh
��En0��T=2� t�� �O�e���E10�T�; (5)

where the last term represents terms involving exponential
factors equal to or smaller than exp
���E10�T�. Thus,
once Eq. (4) is evaluated via Monte Carlo simulations,
we can determine the amplitude jh0jgE�~ri�jnij2 and the
energy gap �En0 in Eq. (5) by a fit and insert them
into Eq. (3). It is easy to see that in the limit T ! 1
we can write Eq. (4) in the integral form V�1��r� �
��1=2�lim�!1

R
�
0 dttC�t�, where � � �T with arbitrary

� 2 �0; T=2�.
The reason for using the PLCF is to compute Eq. (3)

with less systematic errors. The hyperbolic cosine in
Eq. (5) is typical for the PLCF and we can control the
effect of the finite temporal lattice size on the field strength
correlator automatically in the fit. Moreover, the error term
of O�e���E10�T� is already expected to be small for a
reasonable size of T. By contrast, if one uses the Wilson
loop at this point, the spectral representation is just a
multiexponential function, and the leading error term is
of O�e���E10���t��, where �t is the relative temporal dis-
tance between the spatial part of the Wilson loop and the
field strength operator. Here, one cannot choose �t as large
as T, since the temporal extent of the Wilson loop is limited
to T=2 because of the periodicity of the lattice volume.

The only technical problem that arises when using the
PLCF is how to obtain a signal for the field strength
correlator in Eq. (4), since the expectation value of the
PLCF at zero temperature becomes exponentially small
with increasing r, and the signal is easily washed out by
statistical noise. In fact, it is almost impossible to obtain
the signal of the PLCF at intermediate distances, say, r �
0:5 fm, with the commonly used simulation algorithms.
However, we find that this problem can be solved by
applying the multilevel algorithm [24] with a certain modi-
fication as applied to the determination of the spin-
dependent potentials [23,25] (see also [26] for a similar
application).

The basic procedure of the multilevel algorithm (re-
stricted to the lowest level) is as follows. We first divide
the lattice volume into several sublattices along the time
direction, where a sublattice consists of a certain number of
time slices Ntsl. The number of sublattices is Nsub �
T=Ntsl, which is assumed to be integer. In each sublattice
we take averages of the components of the correlation
function [components of the PLCF and of the field strength

correlators, which are in the 3 � 3	 representation of
SU(3)], by updating the gauge field with a mixture of
heat bath (HB) and overrelaxation (OR) steps, while the
spatial links on the boundary between sublattices remain
intact during the update. We refer to this procedure as the
internal update and denote the number of internal update as
Niupd. Repeating the internal update until we obtain stable
signals for these components, we finally multiply these
averaged components to complete the correlation function.
Thereby the correlation function is obtained for one con-
figuration. For a schematic understanding, see Fig. 1,
which illustrates the computation of the electric field
strength correlator on the PLCF. We then update the whole
set of links without specifying any layers to obtain another
independent gauge configuration and repeat the above
sublattice averaging. Once Ntsl and Niupd are optimized
for a given gauge coupling � and a maximal quark-
antiquark distance of interest, the statistical fluctuations
of observables turn out to be quite small. Further technical
details can be found in [23].

Results.—Our simulations were carried out using the
standard Wilson gauge action in SU(3) lattice gauge theory
at � � 6:0 on the 204 lattice (the lattice spacing, deter-
mined from the Sommer scale r0 � 0:5 fm, is a �
0:093 fm [24]). One Monte Carlo update consisted of 1
HB, followed by 5 OR steps. For practical reasons (mainly
to save computer memory) we set ~r � �r; 0; 0�. We em-
ployed the lattice field strength operator defined by
ga2F���s� 
 
U���s� �U

y
���s��=�2i� at the site s, where

U���s� are plaquette variables and constructed the electric
field by ga2Ei�s� � ga2
F4i�s� � F4i�s� î��=2. In order
to remove self-energy contributions of the electric field we
multiplied by the conventional Huntley-Michael factor,
ZEi�r� [27], which, however, removes only self-energy
contributions at O�g2�. This factor, which depends on r
and also on the relative orientation of the electric field

E

r1 r2

r

T

Ntsl

E

t

FIG. 1. Construction of the electric field strength correlator on
the PLCF. Arrows at ~r1 and ~r2 represent the Polyakov lines for
the static quark and antiquark. 
� � �� denotes the sublattice
average.
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operator to ~r, was computed using the PLCF [23]. We
obtained the value ZEi�r� � 1:62. For a more precise value
of ZE, see Ref. [23]. For the chosen value of Ntsl � 4 we
performed Niupd � 7000 internal updates. Our total statis-
tics was Nconf � 60.

In Fig. 2, we show the C�t� for the longitudinal and
the transverse components, hhg2Ex� ~ri; t1�Ex� ~ri; t2�iic and
hhg2Ey� ~ri; t1�Ey�~ri; t2�iic � hhg2Ez� ~ri; t1�Ez� ~ri; t2�iic, re-
spectively, where r=a � 5 is selected as an example.
Note that the correlators are negative. Here, the second
term of Eq. (4) can be nonzero as the electric field is even
under CP transformations. We computed hhgEiii indepen-
dently and found hhgEyii � hhgEzii � 0, while hhgExii �

0, which was then subtracted to obtain C�t�. As it is
impossible to determine the amplitudes and the energy
gaps for all n � 1 with the limited data points, we trun-
cated the expansion in Eq. (5) at a certain n � nmax. The
validity of the truncation was monitored by looking at �2

and the stability of the resulting potential as a function of
nmax, where �2 was always defined with the full covariance
matrix. We found that nmax � 3 was optimal with the fit
range t=a 2 
1; 8� (equivalent to t=a 2 
12; 19�). The sys-
tematic effect caused by the truncation can be checked by
simulating volumes with larger values of T and by increas-
ing nmax in the fit. However, from the experience of eval-
uating similar field strength correlators for the spin-
dependent potentials [23], we expect that such an effect
is already negligible compared to statistical errors, once
three terms are included for T � 20 at � � 6:0. Here, we
employed two ways of the fit procedure; we fitted
hhg2ExExiic and hhg2EyEyiic separately, and fitted hhg2E �

Eiic � hhg
2ExExiic � 2hhg2EyEyiic simultaneously. The

latter is based on the expectation that the energy gaps are
the same for both correlators. We obtained �2

min=Ndf � 1:1
for hhg2ExExiic and 3.0 for hhg2EyEyiic, respectively, and

the corresponding fit curves are plotted in Fig. 2. Ndf is the
number of degrees of freedom. The simultaneous fit
yielded �2

min=Ndf � 2:2. In any case, the resulting potential
was found to be the same within errors, which were esti-
mated from the distribution of the jackknife sample of the
fit parameters. For other distances �2

min=Ndf was smaller
than in this example, and the results of the two fit proce-
dures were consistent.

We present the potential V�1��r� in Fig. 3, where the
result of the simultaneous fit is plotted. We see an increas-
ing behavior as a function of r. We first tested whether this
increasing behavior matches the expectation from pertur-
bation theory. Neglecting logarithmic corrections we fitted
the data at r=a 2 
2; 5� to

 V�1�fit�1�r� � �
c0

r2 ��
0; (6)

and found c0 � 0:099�5� and a2�0 � 0:401�1� with
�2

min=Ndf � 6:6, where the fit curve is plotted in Fig. 3
(dashed line). Note that if we include the data at r=a � 6,
�2 becomes twice as large, while the fit parameters are
little affected. In order to check if this is a remnant of the
perturbative behavior, we need data at smaller distances
and perform a scaling test. At the moment, what we can say
is that the data at r=a * 5 are inconsistent with a pure 1=r2

behavior.
In trying to establish empirically the functional form of

the r dependence, we employed several alternative fit
functions, and among them we found that

 V�1�fit�2�r� � �
c00

r
��00 (7)

can describe the behavior of V�1��r� reasonably well, where
the coefficient c00 has a dimension of mass. We took into
account the data at r=a 2 
2; 6� and obtained ac00 �
0:081�4� and a2�00 � 0:417�1� with �2

min=Ndf � 2:3,
where the fit curve is plotted in Fig. 3 (solid line).

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

20151050

t / a

 - g 2 Ex Ex
 - g 2 Ey Ey c〈〈

〈〈
〉〉

c〉〉

FIG. 2. The electric field strength correlators on the PLCF at
� � 6:0 on the 204 lattice for r=a � 5. The dotted lines are the
fit curves with nmax � 3 in Eq. (5).
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FIG. 3. The potential at O�1=m�, V�1��r�. Dashed and solid
lines are the fit curves corresponding to Eqs. (6) and (7),
respectively.
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As the potential V�1��r� requires no matching coefficient
[28,29], in contrast to the spin-dependent potentials at
O�1=m2�, we can directly insert V�1��r� into Eq. (1) and
compare its relative magnitude with the static potential
V�0��r� for given quark and antiquark masses. For this
purpose we may use the fit result of Eq. (7). By dividing
V�1�fit�2�r� by the quark mass, where we set m1 � m2 � m
for simplicity, we have a 1=r term with a dimensionless
coefficient 2c00=m. For charmonium, mc � 1:3 GeV, we
then find 2c00=mc � 0:26�1�, which is 93(5)% of the
Coulombic coefficient of the static potential, c �
0:281�5�, in Eq. (2) [23]. For bottomonium, mb �
4:7 GeV, we find 2c00=mb � 0:073�4�, which is still
26(2)% of c. It is certainly interesting to investigate the
effect on heavy quarkonium spectroscopy.

Summary.—We have investigated the relativistic correc-
tion to the static potential at O�1=m� nonperturbatively by
using lattice QCD Monte Carlo simulations for the first
time. The key strategy here is to employ the multilevel
algorithm for measuring the field strength correlator on the
PLCF and to extract the potential by exploiting the spectral
representation of the field strength correlators. This
method allows us to obtain the potential with less statistical
and systematic errors. The correction is found to be com-
parable to the Coulombic term of the static potential when
applied to charmonium and to be one-fourth of the
Coulombic term for bottomonium.

Finally, we note that the field strength correlator ob-
tained here can be used to compute one of the velocity-
dependent potentials at O�1=m2�, Vd�r�, in the parametri-
zation of Refs. [14,15], since the spectral representation of
Vd�r� consists of the same amplitudes and the energy gaps.
We plan to present this result as well as the other velocity-
dependent potentials at O�1=m2� in a separate publication.
The first lattice result can be found in Ref. [30].

We thank R. Sommer, N. Brambilla, A. Vairo, and G. S.
Bali for useful discussions. The main calculation has been
performed on the NEC SX5 at Research Center for Nuclear
Physics (RCNP), Osaka University, Japan. We thank H.
Togawa and A. Hosaka for technical support.
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