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We calculate the charm-quark contribution to the decay KL ! ���� in next-to-next-to-leading order
of QCD. This new contribution reduces the theoretical uncertainty in the relevant parameter Pc from
�22% down to �7%, corresponding to scale uncertainties of�3% and �6% in the short-distance part of
the branching ratio and the determination of the Wolfenstein parameter �� from KL ! ����. The error in
Pc � 0:115� 0:018 is now in equal shares due to the combined scale uncertainties and the current
uncertainty in the charm-quark mass. We find B�KL ! �����SD � �0:79� 0:12� � 10�9, with the
present uncertainty in the Cabibbo-Kobayashi-Maskawa element Vtd being the dominant individual
source in the quoted error.
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The study of the rare process KL ! ���� has played a
central role in unraveling the flavor content and structure of
the standard model (SM) of electroweak interactions [1].
These glory days have passed, but still today KL ! ����

provides useful information on the short-distance dynam-
ics of j�Sj � 1 flavor-changing-neutral-current transitions
despite the fact that its decay amplitude is dominated by
the long-distance two-photon contribution KL ! ���� !
����. While the absorptive part of the latter correction is
calculable with high precision in terms of the KL ! ��
rate the corresponding dispersive part represents a signifi-
cant source of theoretical uncertainty. In fact long- and
short-distance dispersive pieces cancel against each other
in large parts and the measured total KL ! ���� rate [2]
is nearly saturated by the absorptive two-photon contribu-
tion. The precision in the determination of the dispersive
pieces therefore controls the accuracy of possible bounds
on the real part of the Cabibbo-Kobayashi-Maskawa
(CKM) element Vtd or, equivalently, the Wolfenstein pa-
rameter ��. In view of the recent experimental [3] and
theoretical [4] developments concerning the dispersive
long-distance part of the KL ! ���� decay amplitude
it is also worthwhile to improve the theoretical accuracy of
the associated short-distance contribution. This is the pur-
pose of this Letter.

The branching ratio for the dispersive short-distance part
of KL ! ���� can be written as [5]

 B �KL ! �����SD � ��

�
Re�t
�5

Y�xt� �
Re�c
�

Pc

�
2
;
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�
�

0:225

�
8
; (2)

where �i 	 V�isVid denote the relevant CKM factors. There

is also a short-distance two-loop electroweak contribution
in the two-photon mediated decay amplitude [6].
Following [4], where this contribution is included in the
two-photon correction itself, we do not add it to the short-
distance contribution in Eq. (1). The apparent strong de-
pendence of B�KL ! �����SD on � 	 jVusj is spurious
as Pc is proportional to 1=�4. In quoting the value for Pc
we will set � � 0:225. The electromagnetic coupling �
and the weak mixing angle sin2	W entering B�KL !
����� are naturally evaluated at the electroweak scale
[7]. Then the leading term in the heavy top expansion of the
electroweak two-loop corrections to Y�xt� amounts to typi-
cally �1:5% for the modified minimal subtraction scheme
(MS) definition of � and sin2	W [8]. In obtaining the
numerical value of Eq. (2) we have employed � 	

�MS�MZ� � 1=127:9, sin2	W 	 sin2	̂MS
W � 0:231, and

B�K� ! ����� � �63:39� 0:18� � 10�2 [9].
The function Y�xt� in Eq. (1) depends on the top quark

MS mass through xt 	 m2
t ��t�=M

2
W . It originates from

Z-penguin and electroweak box diagrams with an internal
top quark. As the relevant operator has a vanishing anoma-
lous dimension and the energy scales involved are of the
order of the electroweak scale or higher, the function Y�xt�
can be calculated within ordinary perturbation theory. It is
known through next-to-leading order (NLO) [10,11], with
a scale uncertainty due to the top quark matching scale
�t � O�mt� of slightly more than �2%. Converting the
top quark pole mass of Mt � �172:5� 2:3� GeV [12] at
three loops tomt�Mt� [13] and relating mt�Mt� tomt�mt� �
�162:8� 2:2� GeV using the one-loop renormalization
group (RG), we find Y�xt� � 0:950� 0:049. The given
uncertainty combines linearly an error of �0:029 due to
the error of mt�mt� and an error of �0:020 obtained by
varying �t in the range 60 GeV 
 �t 
 240 GeV.

The calculable parameter Pc entering Eq. (1) results
from Z-penguin and electroweak box diagrams involving
internal charm-quark exchange. As now both high- and
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low-energy scales, namely, �W � O�MW� and �c �
O�mc�, are involved, a complete RG analysis of this term
is required. In this manner, large logarithms ln��2

W=�
2
c� are

resummed to all orders in �s. The large scale uncertainty
due to �c of�44% in the leading order result was a strong
motivation for the NLO analysis of this contribution [5,11].

Performing the RG running from �W down to �b �
O�mb� in an effective five-flavor theory and the subsequent
evolution from �b down to �c in an effective four-flavor
theory, we obtain at NLO

 Pc � 0:106� 0:023theor � 0:009mc
� 0:001�s

� �0:106� 0:034�
�
0:225

�

�
4
; (3)

where the parametric errors correspond to the ranges of the
charm-quark MS mass mc�mc� and the strong coupling
constant �s�MZ� given in Table I. The final error has
been obtained by performing a detailed analysis of the
individual sources of uncertainty entering the NLO pre-
diction of Pc using a modified version of the CKMFITTER

package [15]. The same statistical treatment of errors will
be applied in Eqs. (4), (8), and (9).

The dependence of Pc on �c can be seen in Fig. 1. The
solid line in the upper plot shows the NLO result obtained
by evaluating �s��c� from �s�MZ� solving the RG equa-
tion of �s numerically, while the dashed and dotted lines
are obtained by first determining the scale parameter �MS

from �s�MZ�, either using the explicit solution of the RG
equation of �s or by solving the RG equation of �s
iteratively for �MS, and subsequently calculating �s��c�

from �MS. The corresponding two-loop values for �s��c�

have been obtained with the program RUNDEC [16].
Obviously, the difference between the three curves is due
to higher order terms and has to be regarded as part of the
theoretical error. With its size of �0:006 it is almost
comparable to the variation of the NLO result due to �c,
amounting to �0:016. In [5] a larger value for the latter
uncertainty has been quoted. The observed difference is
related to the definition of the charm-quark mass.
Replacing mc�mc� in the logarithms ln��2

c=m
2
c� of the

one-loop matrix elements by the more appropriate
mc��c� leads to a significant reduction of the dependence
of Pc on �c. A detailed discussion of this issue can be
found in [17]. Finally, while in [5] only �c was varied, the
theoretical error given in Eq. (3) includes also the depen-

dence on �b and �W of combined �0:001. The specified
scale uncertainties correspond to the ranges 1 GeV 

�c 
 3 GeV, 2:5 GeV 
 �b 
 10 GeV, and 40 GeV 

�W 
 160 GeV.

Using the input parameters listed in Table I, we find
from Eqs. (1)–(3) at NLO
 

B�KL ! �����SD � �0:77� 0:08Pc � 0:08other� � 10�9

� �0:77� 0:16� � 10�9; (4)

where the second error in the first line collects the uncer-
tainties due to ��, Y�xt� and the CKM elements.

As the uncertainties in Eqs. (3) and (4) coming from Mt,
mc�mc� and the CKM parameters should be decreased in
the coming years it is also desirable to reduce the theoreti-
cal uncertainty in Pc. To this end, we here extend the NLO
analysis of Pc presented in [5,11] to the next-to-next-to-
leading order (NNLO). This requires the computation of
three-loop anomalous dimensions of certain operators and
of certain two-loop contributions.

The main components of the NNLO calculation, which
aims at resumming all O��ns lnn�1��2

W=�
2
c�� logarithms in

Pc, are (i) the O��2
s� matching corrections to the relevant

Wilson coefficients arising at �W , (ii) the O��3
s� anoma-

lous dimensions describing the mixing of the dimension-
six and -eight operators, (iii) the O��2

s� threshold correc-

TABLE I. Input parameters used in the numerical analysis of
Pc, B�KL ! �����SD and ��.

Parameter Value� Error Reference

mc�mc� [GeV] 1:30� 0:05 [14], our average
�s�MZ� 0:1187� 0:0020 [9]
Re�t [10�4] �3:11�0:13

�0:14 [15]
Re�c �0:22098�0:00095

�0:00091 [15]

µc [GeV]

P c

32.752.52.2521.751.51.251

0.14

0.12

0.1

0.08

µc [GeV]

P c

32.752.52.2521.751.51.251

0.14

0.12

0.1

0.08

FIG. 1. Pc as a function of �c at NLO (upper plot) and NNLO
(lower plot). The three different lines correspond to three differ-
ent methods of computing �s��c� from �s�Mz� (see text).
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tions to the Wilson coefficients originating at �b, and
(iv) the O��2

s� matrix elements of some of the operators
emerging at �c. To determine the contributions of type (i),
(iii), and (iv) one must calculate two-loop Green functions
in the full SM and in effective theories with five or four
flavors. Sample diagrams for steps (i) and (iv) are shown in
the left and right columns of Fig. 2. The contributions
(ii) are found by calculating three-loop Green functions
with operator insertions. Sample diagrams with a double
insertion of dimension-six operators are shown in the
center column of Fig. 2.

The Z-penguin contribution can be trivially obtained
from that in K� ! ��� ��, which has been recently com-
puted at NNLO [17,18]. The electroweak box contribution
on the other hand is slightly different for KL ! ���� and
K� ! ��� ��, since the lepton line in the corresponding
Feynman diagrams is reversed and thus requires a new
calculation. A comprehensive discussion of the technical
details of the matching and the renormalization of the
effective theory can be found in [17].

In the following we present only the final result for the
O��2

s� matching correction CB�2�� , the O��3
s� anomalous

dimension �B�2�� , and the O��2
s� matrix element rB�2�� .

Employing the operator basis of [5,11] we obtain for the
standard choices of Casimir operators CA � 3, CF � 4=3,
and f active quark flavors

 

CB�2�� �
416

3
�

16�2

3
�

272

3
ln
�2
W

M2
W

� 16ln2 �
2
W

M2
W

;

�B�2�� �
27 032

9
� 1088��3� �

1040

9
f;

rB�2�� � �
112

3
�

80

3
ln
�2
c

m2
c
� 16ln2 �

2
c

m2
c
:

(5)

Here ��x� is the Riemann zeta function with the value
��3� � 1:20 206 and mc 	 mc��c� denotes the charm-
quark MS mass. Our results for the NLO Wilson coeffi-
cient, the anomalous dimension and the matrix element
agree with the findings of [11] where an error made in the
original calculation [5] has been corrected.

The analytic expression for Pc including the complete
NNLO corrections is too complicated and too long to be
presented here. Instead setting � � 0:225, mt�mt� �
162:8 GeV and �W � 80:0 GeV we derive an approxi-
mate formula for Pc that summarizes the dominant para-
metric and theoretical uncertainties due to mc�mc�,
�s�MZ�, �c, and �b. It reads
 

Pc � 0:1198
�
mc�mc�

1:30 GeV

�
2:3595

�
�s�MZ�

0:1187

�
6:6055

�

�
1�

X
i;j;k;l

�ijlmL
i
mc
Lj�sL

k
�c
Ll�b

�
; (6)

where

 Lmc
� ln

�
mc�mc�

1:30 GeV

�
; L�s � ln

�
�s�MZ�

0:1187

�
;

L�c
� ln

�
�c

1:5 GeV

�
; L�b

� ln
�

�b

5:0 GeV

�
;

(7)

and the sum includes the expansion coefficients �ijkl given
in Table II. The above formula approximates the exact
NNLO result with an accuracy of better than �1:0% in
the ranges 1:15 GeV 
 mc�mc� 
 1:45 GeV, 0:1150 

�s�MZ� 
 0:1230, 1:0 GeV 
 �c 
 3:0 GeV, and
2:5 GeV 
 �b 
 10:0 GeV. The uncertainties due to
mt�mt�, �W and the different methods of computing
�s��c� from �s�MZ�, which are not quantified above, are
all below �0:2%. Their actual size at NNLO will be
discussed below.

Using the input parameters listed in Table I, we find at
the NNLO level

 Pc � 0:115� 0:008theor � 0:008mc
� 0:001�s

� �0:115� 0:018�
�

0:225

�

�
4
; (8)

where now the residual scale ambiguities and the uncer-
tainty due tomc�mc� are of the same size. Comparing these
numbers with Eq. (3) we observe that our NNLO calcu-
lation reduces the theoretical uncertainty by a factor of
more than 3.

Z

c
c

W

g
c

ds s µ µ

c

s d

g c
g

µ µ

c

s d

g

c

c

W µ

Wd µ

c

c
g

ss
s µ

νν

d µ

c

g

g

c

s µ

d µ

g

c

c

ν

FIG. 2. Examples of Feynman diagrams arising in the full SM
(left column), describing the mixing of operators (center col-
umn) and the matrix elements (right column) in the Z-penguin
(upper row) and the electroweak box (lower row) sector. Only
the divergent pieces of the diagrams displayed in the center
column have to be computed, while the Feynman graphs shown
on the left- and right-hand side are needed including their finite
parts.

TABLE II. The coefficients �ijkl arising in the approximate
formula for Pc at NNLO.

�1000 � �0:5373 �0100 � �6:0472 �0010 � �0:0956

�0001 � 0:0114 �1100 � 3:9957 �1010 � 0:3604
�0110 � 0:0516 �0101 � �0:0658 �2000 � �0:1767
�0200 � 16:4465 �0020 � �0:1294 �0030 � 0:0725
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As can be nicely seen in the lower plot of Fig. 1, Pc
depends very weakly on �c at NNLO, varying by only
�0:007. Furthermore, the three different treatments of �s
affect the NNLO result in a negligible way. The three-loop
values of �s��c� used in the numerical analysis have been
obtained with the program RUNDEC. The theoretical error
quoted in Eq. (8) includes also the dependence on �b and
�W of combined �0:001. The presented scale uncertain-
ties correspond to the ranges given earlier.

Using Eqs. (1), (2), and (8) the result in Eq. (4) is
modified to the NNLO value
 

B�KL ! �����SD � �0:79� 0:04Pc � 0:08other� � 10�9

� �0:79� 0:12� � 10�9: (9)

Obviously, at present the errors from Mt, mc�mc� and the
CKM parameters veil the benefit of the NNLO calculation
of Pc presented in this Letter.

Provided both Pc and B�KL ! �����SD are known
with sufficient precision useful bounds on the
Wolfenstein parameter �� can be obtained [5]. In particular
for the measured branching ratio B�KL ! �����SD close
to its SM predictions, one finds that given uncertainties
��Pc� and ��B�KL ! �����SD� translate into

 

�� ���
��
� �0:89

��Pc�
Pc

� 2:59
��B�KL ! �����SD�

B�KL ! �����SD
:

(10)

As seen in Eq. (10) the accuracy of the determination of
�� depends sensitively on the error in Pc. The reduction of
the theoretical error in Pc from �22% down to �7%
translates into the following uncertainties

 

�� ���
��
�

�
�20%; NLO;
�6%; NNLO;

(11)

implying a significant improvement of the NNLO over the
NLO result. In obtaining these numbers we have included
only the theoretical errors quoted in Eqs. (3) and (8).

Using the conservative upper bound

 B �KL ! �����SD < 2:5� 10�9; (12)

on the short-distance part of the KL ! ���� branching
ratio derived in [4], we find the following allowed range

 � 0:74< �� < 3:13; (13)

for the Wolfenstein parameter �� employing a customized
version of the CKMFITTER code.

To conclude, we have evaluated the complete NNLO
correction of the charm-quark contribution to B�KL !
�����SD. The inclusion of these contributions leads to a
drastic reduction of the theoretical uncertainty in the rele-
vant parameter Pc. This strengthens the power of the rare

decay KL ! ���� in determining the Wolfenstein pa-
rameter �� from its short-distance branching ratio.
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[16] K. G. Chetyrkin, J. H. Kühn, and M. Steinhauser, Comput.
Phys. Commun. 133, 43 (2000).

[17] A. J. Buras et al., hep-ph/0603079.
[18] A. J. Buras et al., Phys. Rev. Lett. 95, 261805 (2005).

PRL 97, 122002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
22 SEPTEMBER 2006

122002-4


