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We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show
that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon
statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the
different spectral and angular distributions. The signatures of the Unruh effect become significant if the
external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and
might be observable with future facilities. Finally, the corrections due to the birefringent nature of the
QED vacuum at such ultrahigh fields are discussed.
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Introduction.—One of the most fascinating phenomena
of noninertial quantum field theory is the Unruh effect: An
observer or detector undergoing a uniform acceleration a
experiences the Minkowski vacuum as a thermal bath with
the Unruh temperature [1]

 TUnruh �
@

2�kBc
a: (1)

As one might expect from the principle of equivalence, the
Unruh effect is closely related to Hawking radiation [2],
i.e., black hole evaporation: The uniformly accelerated
observer (detecting the Unruh effect) corresponds to an
observer at a fixed distance to the horizon (feeling the
gravitational pull and measuring the Hawking radiation),
whereas the inertial observer in flat space-time is analo-
gous to an unfortunate astronaut freely falling into the
black hole. However, there is also a crucial difference
between the two phenomena: In contrast to the case of
uniform acceleration, the free fall into a black hole is (per
the definition of a black hole) not invariant under time
reversal. Hence, while Hawking radiation generates a real
outflow of energy (black hole evaporation), the Unruh
effect corresponds to an equilibrium thermal bath and
does not create any energy flux per se.

The most direct way of observing this striking effect
would be to accelerate a detector and to measure its ex-
citations. However, this is extremely difficult since mod-
erate accelerations correspond to extremely low tem-
peratures, and, thus, the Unruh effect has not been directly
observed so far (see, however, [3,4]). Therefore, we focus
on a somewhat indirect signature in the following: Since
the uniformly accelerated detector acts as if it was im-
mersed in a thermal bath, there is a finite probability that it
absorbs a (virtual) particle from this bath and passes to an
excited state. Translated back into the inertial frame, this
process corresponds to the emission of a real particle [5].
The opposite process, when the detector reemits the parti-

cle into the bath in the accelerated frame and goes back to
its ground state, also corresponds to the emission of a real
particle in the inertial frame.

In the limiting case that the time between absorption and
reemission becomes arbitrarily small, the detector trans-
forms into a scatterer which scatters particles from one
mode into another mode of the thermal bath in the accel-
erated frame. Translated back into the inertial frame, this
process corresponds to the emission of two real particles by
the accelerated scatterer. This effect is analogous to
moving-mirror radiation [6] and can be interpreted as a
signature of the Unruh effect. In the following, we calcu-
late this quantum radiation given off by electrons acceler-
ated in ultraintense electromagnetic fields (acting as
pointlike noninertial scatterers) and compare it to the
classical (Larmor) radiation. An analogous idea has al-
ready been pursued in Ref. [7] but in the derivation pre-
sented therein did not take into account crucial features of
the radiation (such as the fact that the photons are always
created in correlated pairs).

Low-energy effective action.—For accelerations caused
by electric fields E well below the Schwinger [8,9] limit
(the regime we are interested in), the Unruh temperature
(1) and hence also the typical energies of the scattered
photons are much smaller than the electron mass m.
Furthermore, we assume that the magnetic field B is neg-
ligible compared to the (external) electric field E acceler-
ating the electron: E2 � c2B2. Apart from facilitating a
straight electron trajectory (which will become important
later on), this ensures that the energy �e �B associated to
the spin�e � �e@=m of the electron is much smaller than
the photon energies. Hence, the spin only changes very
slowly and basically does not interact with the other de-
grees of freedom. In this limit, the electrons can be treated
as pointlike particles which act via their charge only
(Thomson scattering). In the temporal gauge, the corre-
sponding action A � �m

R
ds� q

R
dx�A� yields the
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Lagrangian (@ � "0 � �0 � c � 1 throughout)

 L � �m
��������������
1� _r2

p
� q _r �A�r�; (2)

where q is the charge of the electron with the trajectory r�t�
and A the vector potential.

Since it will be most relevant for the following inves-
tigations, we shall focus on planar Thomson scattering
(which yields the maximum cross section), where the
polarizations Ain and Aout of the scattered photons are
perpendicular to the (undisturbed) trajectory of the elec-
tron. Hence, the field A in (2) can be split up A � Ak �
A? into a strong external electric fieldEk � @tAk � const
accelerating the electron plus weak electromagnetic waves
A? with low energies. They cause small deviations �r? of
the electron’s path r � rk � �r? from its linear trajectory
rk. After linearization, the transversal canonical momen-
tum � _r?=�1� _r2

k
�1=2 � qA?=m is conserved along the

electron’s path according to the Euler-Lagrange equations,
and, thus, we may eliminate the small transversal fluctua-
tions �r? by inserting � _r? � q�1� _r2

k
�1=2A?=m back

into the action (2). Consequently, the dynamics of the
weak electromagnetic waves A? is governed by the low-
energy effective action for planar Thomson scattering

 L? �
1
2�E

2
? � B

2
?� � gA

2
?�

3�rk	t
 � r�
�������������������
1� _r2

k
	t


q
:

(3)

In the following, we shall drop the superscripts ? for
brevity and denote the (undisturbed) electron’s trajectory
by re � rk. The coupling g � q2=m determines the cross
section for planar Thomson scattering, and the last factor
ensures the relativistic invariance of the action A �

g
R
dsA�A

� �
R
d4xF��F

��=4. In the natural units used
here, the charge q is related to the fine-structure constant
�QED via q �

������������������
4��QED

p
� 0:3.

The effective action (3) reproduces the well-known pic-
ture of Thomson scattering: For weak electromagnetic
waves whose wavelength is much larger than the
Compton wavelength (formal limit m " 1), the electron
acts as a classical pointlike scatterer with a spin and
energy-independent cross section [9]. Since the electron
is too heavy to feel the recoil of the scattered photons, the
correlations between the photons and the path of the elec-
tron (and also the time delay between absorption and
reemission mentioned in the introduction) are negligible.
Finally, for planar Thomson scattering, the angular depen-
dence of the scattering amplitude vanishes.

Quantum radiation.—In order to calculate the photons
created by the noninertial motion re	t
 of the scatterer, let
us split the total Hamiltonian into a perturbation part

 Ĥ 1�t� � gÂ2�t; re	t
�
�������������������
1� _r2

e	t

q

; (4)

supplemented with the usual adiabatic switching on and off
g�jtj " 1� � 0, and the undisturbed Hamiltonian Ĥ0 �

1
2

R
d3r�Ê2 � B̂2�, which leads to the usual normal mode

expansion.
Since the coupling g � 3:5� 10�14 m is much smaller

than all other relevant length scales (such as the wave-
lengths of the photons), higher orders in g can be neglected
and the evolution of the initial Minkowski vacuum j0i can
be derived via time-dependent perturbation theory jouti �
j0i � i

R
dtĤ1�t�j0i �O�g2�, which gives

 jouti � j0i �
X

k;�;k0;�0
Ak;�;k0;�0 jk; �; k0; �0i �O�g2�; (5)

with the two-photon amplitude
 

Ak;�;k0;�0 �
ek;� � ek0;�0

2iV
�������
kk0
p

Z
dtg

�������������������
1� _r2

e	t

q

� expfi�k� k0�t� i�k� k0� � re	t
g: (6)

Here k is the wave number and k � jkj the frequency of the
photon modes; � labels their polarization described by the
unit vector ek;�, and V is the quantization volume. Since a
time-resolved detection of the created photons is probably
infeasible, polarization and momentum are the best ob-
servables to be measured. As one may infer from the above
expression, the photons are always emitted in pairs
(squeezed state), and there is a perfect correlation of the
polarizations of the two photons due to the scalar product
ek;� � ek0;�0 . Parallel photons k k k0 are maximally en-
tangled; i.e., they must have the same polarization � �
�0. Note that this applies to linear polarization; the circular
polarizations of the two created photons are opposite (for
Thomson scattering [9]) due to angular momentum
conservation.

In terms of the new integration variable � � t� rke	t

with rke � �k� k0� � re=�k� k0�, the two-photon ampli-
tude

 A k;�;k0;�0 �
ek;� � ek0;�0

2iV
�������
kk0
p

Z
d�g

�������������������
1� _r2

e	t

p
1� _rke	t


ei�k�k
0��; (7)

is determined by the Fourier transform of the effective
(direction-dependent) Doppler factor above.

Larmor radiation.—In order to discuss the observability
of this quantum radiation, it must be compared with the
competing classical process. The Larmor radiation can be
derived from the relativistic action q

R
dx�A� and corre-

sponds to a coherent state / expf
P
k�k;�â

y
k;�gj0i with the

coefficients (see, e.g., [10])

 �k;� � q
Z
dt
ek;� � _re	t
���������

2Vk
p eikt�ik�re	t
: (8)

The numerator ek;� � _re displays the well-known blind spot
in the forward and backward direction k k _re. The intro-
duction of a new integration variable � � t� k � re	t
=k
yields a Fourier transform analogous to Eq. (7).

For an investigation of the detectability of the quantum
radiation in Eq. (7), the two-photon amplitude jAk;�;k0;�0 j
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must be compared with the amplitude for the competing
classical process, which is given by j�k;��k0;�0 j to lowest
order in �k;�. In view of the smallness of the coupling g
and assuming comparable results of the Fourier integrals
(no resonances, etc.), there are basically two possibilities
for achieving jAk;�;k0;�0 j> j�k;��k0;�0 j: small velocities
_r2
e � 1 or small angles # between k and _re (blind spot).

The first alternative is probably impractical since the total
effect becomes too small, but the latter option can be
realized for a unidirectional acceleration leading to a
well-defined blind spot (cf. Fig. 1).

Ultrarelativistic regime.—In order to be as close as
possible to the scenario of the Unruh effect (eternally
uniform acceleration), let us consider an external electric
field which is approximately constant over a sufficiently
long period of time. Of course, such a pulse E�t� neces-
sarily accelerates the electrons to ultrarelativistic velocities
�� 1. Since both quantum and classical radiation will be
boosted forward in this case (cf. Fig. 1), we shall focus on a
small forward cone # � 1=�; see also Eq. (12) below. In
this limit, Eq. (7) simplifies to (for � � �0)

 A k;�;k0;�0 �
Z
d�

g����

iV
�������
kk0
p ei�k�k

0��; (9)

with a time-dependent Lorentz factor ����whose evolution
is determined by d�=dt � qE�t�=m as well as dt �
2�2d�. Since ���� jumps from its initial value of order
one to its maximum value �max � 1 on an effective time
scale �� much shorter than the pulse length �t, the above
integral behaves like the Fourier transform of a Heaviside
step function for small k

 A k;�;k0;�0 � O

�
g�max

V
�������
kk0
p

�k� k0�

�
: (10)

The behavior at large k is determined by the structure of the
integrand in (9) near the maximum Lorentz factor �max,

where d�=d� drops from 2�2qE=m to zero on an effective
time scale of �� � O��t=�2

max�. As one would expect
from the simplified picture of a Lorentz boosted Unruh
temperature, the photons with the highest energies are
typically created in the final stage of the acceleration
phase. In order to resolve deviations (smoothening) from
the step-function behavior, the wave number must exceed a
certain cutoff kcut � O��2

max=�t� determined by the effec-
tive time scale �� � O��t=�2

max�. Since �max is roughly
given by the pulse length �t times the acceleration qE=m,
the cutoff wave number can alternatively be written as
kcut � O��maxqE=m�, which corresponds to the Unruh
temperature (1) boosted by �max. Below this cutoff, the
amplitude behaves as (10), and, for k values larger than
kcut, the decline is faster than polynomial [assuming a
smooth C1 pulse E�t�]. This behavior has also been con-
firmed by numerical integrations of Eq. (7). Hence, the
typical photon energies are determined by that cutoff
kcut � O��maxqE=m� and might even exceed the electron’s
rest mass for large Lorentz factors.

An analogous estimate for the Larmor radiation yields

 �k;� �
Z
d�

2q#�2���������
2Vk
p eik� � O

�
q#�2

max���������
Vk3
p

�
; (11)

with basically the same wave number cutoff. Of course,
quantum radiation dominates for sufficiently small #. For
the cutoff wave number kcut, the angular size of the small
forward cone of ‘‘quantum domination’’ scales as

 #max � O

� �������
qE

m2

s
1

�max

�
(12)

and is determined by �max and ratio of the electric field E
over the Schwinger [8] limit ES � m2=q. The probability
of (two-photon) emission in this cone is given by

 P �#max� �
X#<#max

k;�;k0;�0
jA2
k;�;k0;�0 j � O

�
q4 E

4

E4
S

�
: (13)

Interestingly, for a given electric field strength E, this
probability does not depend significantly on the pulse
length since �max cancels—but the energy kmax and the
angular distribution #max of the emitted photons does.

Extensions.—Since the observation of the photon pairs
requires electromagnetic fields which are not too far below
the Schwinger limit, one should also consider the impact of
these ultrahigh fields on the QED vacuum, which then acts
as a medium and displays effects such as birefringence. To
this end, we consider the first nonlinear corrections from
the Euler-Heisenberg Lagrangian [11]

 L �
1

2
�E2 �B2� �

�E2 � B2�2 � 7�E � B�2

90�E2
S=�QED

: (14)

If we neglect the external magnetic field and linearize
around an approximately homogeneous external electric
field E0, we get D � " �E, with the permittivity tensor ".

FIG. 1 (color). Two-photon amplitudes for quantum (Unruh,
left image) and classical (Larmor, right image) radiation gen-
erated by an electron which is (after being initially at rest)
accelerated by a Gaussian electric field pulse with a width of
0.3 as to a moderately relativistic velocity �max � 2 and moves
to the right. The amplitudes are shown for k � k0 and � � �0

and plotted as a function of k. The points in the middle of the
images correspond to k � 0 and the maximum k values at the
left and right boundaries to 30 keV. The color coding (same in
both images) is chosen such that red indicates large amplitude
and blue vanishing amplitude. The black areas are the excised
singularities at k � 0 and the black lines are isolines. One can
clearly see that quantum radiation (left image) dominates inside
a small forward and backward cone.
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Hence, the transversality condition k � " � ek;� � 0 devi-
ates from k � ek;� � 0, and, thus, the Larmor radiation does
not necessarily vanish in the forward direction anymore.
However, for a trajectory along a field line _re k E0, i.e.,
along an eigenvector of ", the Larmor radiation still has the
blind spot k ? ek;� in the forward direction k k E0.

With an external magnetic field B0, on the other hand,
additional terms appear. Assuming k k E0 ? B0, one of
the (linear) polarizations � has a blind spot in the forward
direction k � ek;� � 0 but the other one �0 has not [k �
ek;�0 � 4�QEDkE0B0=�45�E2

S�]. Although the numerical
prefactor is rather small (2� 10�4), this effect should be
taken into account when searching for quantum radiation
[12]. On the other hand, it might also provide an oppor-
tunity for testing the birefringent nature of the QED vac-
uum in the presence of ultrahigh external fields (see also
[13]). Similarly, one obtains small corrections to the two-
photon correlations.

Summary.—We have studied the conversion of (virtual)
quantum vacuum fluctuations into (real) particles by non-
inertial (planar) Thomson scattering for the example of
strongly accelerated electrons. This quantum radiation
can be discriminated from classical (Larmor) radiation
via the different angular (blind spot cf. Fig. 1) and spectral
distributions and the distinct photon statistics: In the quan-
tum case, the photons are always emitted in pairs
(squeezed state) with perfectly correlated polarizations—
whereas the classical (Larmor) radiation corresponds to a
coherent state (independent photons with Poissonian
statistics).

The probability of emitting two photons with wave
numbers k� kcut scales as 1=k4 for quantum (Unruh)
radiation and as 1=k6 for Larmor. Note that the spectrum
is not Planckian, in general. This is caused by the nontrivial
translation from the accelerated frame to the inertial frame
with a time-dependent Lorentz boost factor ��t�whose rate
of change is of the same order as the frequency correspond-
ing to the Unruh temperature (i.e., nonadiabatic). In addi-
tion, a state consisting of pairs of correlated photons can
never be exactly thermal.

Apart from the derivation of the correct two-photon
spectral and angular distributions and the perfect correla-
tion of polarization, the approach presented in this Letter
(properly accounting for the two-photon nature of quantum
radiation) presents another advantage in comparison with
previous works [7]: Because the probability for a single
Larmor photon in the cone (12) scales as q2E2=E2

S �
P�#max�, coincidence measurements are probably crucial
for discriminating classical from quantum radiation (co-
herent versus squeezed state).

According to Eq. (13), the signatures of the Unruh effect
might be detectable in future facilities (cf. [14–16]) gen-
erating O�1 as� electric field pulses not too far below [9]
the Schwinger limit ES � 1:3� 1018 V=m which acceler-
ate the electrons (e.g., created via the Schwinger effect) to
ultrarelativistic velocities. The emitted photons could be

measured via their Compton scattering in large-volume
Si(Li) orthogonal-strip detectors (placed in the blind
spot), allowing one to determine their wave number k
and polarization � (to deduce the photon entanglement).
Conversely, one might use the spectral and angular distri-
bution of the radiation to infer the characteristic parameters
of the pulse such as E, �t, and �max, etc.
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