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We introduce a scheme for fault tolerantly dealing with losses (or other ‘“‘leakage” errors) in cluster
state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive
strategy of measurement—no coherent measurements or coherent correction is required. Since the
scheme relies on inferring information about what would have been the outcome of a measurement
had one been able to carry it out, we call this counterfactual error correction.
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Quantum computation architectures can only be consid-
ered viable if they are demonstrably fault tolerant.
Thresholds on fault tolerance are typically quoted as
around 0.01% —that is, the error on a generic gate opera-
tion or state preparation should be less than this amount.
However, one hopes that for specific error models well
chosen strategies might significantly relax this rather strin-
gent requirement [1].

A new architecture for quantum computation that is
generating much interest is the cluster state model [2—4],
otherwise known as “‘one-way quantum computation.” In
this approach, the quantum computation proceeds in two
stages. First, a special kind of entangled multiparty state,
called a cluster state, is generated. The quantum computa-
tion is then implemented by single qubit measurements;
the specific algorithm computed is a function of the choice
of measurement bases, and the order in which they are
made. There are two main approaches to tackling fault
tolerance in a new architecture. One is to translate standard
fault tolerance techniques to the new model, an approach
which has been successful for the cluster state quantum
computation [5-7]. A different approach is to develop
novel protocols which exploit the features of the architec-
ture, in this case the entanglement of the cluster states
themselves. This is the approach we have adopted here.
A further recent development in this vein is a fault-tolerant
model which exploits the fact that certain cluster states are
topological error correcting codes [8].

A main result of this Letter will pertain to architectures
which can produce and utilize cluster states in such a way
that a significant error mechanism involves each qubit in
the cluster being lost (or undergoing some other sort of
detectable failure) with fixed and independent probability
go. What we will show is if €y < 50% then computation
fault tolerant to loss errors is possible. Remarkably, this
can be achieved with only destructive measurements, and
without coherent correction mechanisms needing to be
applied to the qubits.

We begin by introducing cluster state structures for
quantum computation which are naturally resilient to qubit
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loss. To simplify the first part of our discussion, we shall
initially assume that any loss errors occur after the en-
tangled state has been generated. Later on, we shall relax
this requirement.

We use X, Y;, Z; to denote the Pauli operators on qubit i,
and define cluster states in terms of their stabilizers [3] as
follows: A cluster state is represented by a graph, where the
n vertices of the graph denote qubits, while the bonds
denote a certain entangling operation between them.
Denoting by E(i) the set of edges on this underlying graph
which are connected to vertex i, the cluster state is that
state which is invariant under the action of the n stabilizer
operators: X;[ [icg:)Z;-

Equivalently, the cluster state is the state obtained by
preparing each qubit in the state |0) + |1) and then apply-
ing a CPHASE (controlled phase-flip) gate to every pair of
qubits connected by an edge on the graph.

Since the cluster states are eigenstates of the stabilizers,
they predict with certainty correlations in the measurement
outcomes of certain sets of measurements. To illustrate
this, consider a two-qubit state stabilized by the operator
X,Z,. If observable X| is then measured the outcome of Z,
is now known with certainty. We say that the measurement
X, is an indirect measurement of the observable Z,.
Importantly, if such a state is prepared, and qubit 2 under-
goes a loss error, Z, can still be measured indirectly, even
though qubit 2 is no longer available. The principle of
applying counterfactual reasoning to the correlations in
cluster states to effect indirect measurements on lost qu-
bits, lies at the heart of our scheme.

The cluster state structure we utilize is that of a tree (see
Fig. 1), which can be specified by its branching parameters
b; as indicated. The tree graphs are designed in this way to
take full advantage of the three general cluster state prop-
erties summarized in Fig. 2. In particular, a crucial feature
of these tree clusters is that any given qubit within the
cluster can be removed indirectly (utilizing an effective
Z measurement) by performing measurements on a subset
of the qubits below it in the cluster. This is depicted in
Fig. 3.
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FIG. 1 (color online).
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A tree cluster with branching parameters

Suppose we desire to perform a quantum computation
using the cluster shown in Fig. 4(a). In general, the com-
putation requires the measurement of some observable,
A(a) = cosaX + sinaY, directly on a given qubit as in-
dicated. However, due to the properties (b) and (c) of
Fig. 2, it is clear that an equivalent measurement procedure
is given by Fig. 4(b). The important point to note, is that
there is an alternative measurement pattern—that of
Fig. 4(c)—which also achieves exactly the same effect.
Now, since they are in the Pauli group, the pair of X
measurements can be performed “offline,* i.e., as part of
preparing the cluster state for the computation and prior to
the computation having reached this position. Alter-
natively the cluster state which results after these X mea-
surements could be grown directly.

The loss tolerance of this proposal stems from the fol-
lowing observation. If the A measurement attempted in
Fig. 4(b) fails to register an outcome due, for example, to
a loss error, then we try to remove this qubit from the
cluster by an indirect Z measurement, and proceed to make
the A measurement as in Fig. 4(c). If this measurement also
fails (or if any of the necessary Z measurements fail) then
the computation has failed. As we now show, the general-
ization of this simple procedure to a tree with larger
branching parameters can greatly reduce the effective qubit
loss rate and lead to a successful implementation of the A
measurement.
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FIG. 2 (color online). Certain measurements on a graph qubit
leave the remaining qubits in a new cluster state with a different
layout: (a) A Z eigenbasis measurement removes the qubit from
the cluster and breaks all bonds between that qubit and the rest.
(b) Two adjacent X measurements on a linear cluster remove the
qubits and form direct bonds between their neighbors.
(c) Measuring a qubit in the X basis and performing Z measure-
ments on all but one of the remaining directly bonded qubits
deterministically reveals what the Z measurement outcome
would have been on the unmeasured qubit.
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FIG. 3 (color online). An indirect Z measurement will be
performed on the indicated qubit if either the three measure-
ments circled in red are successful, or if those circled in green
are successful.

Note that the order of the measurements demanded by
the our loss-tolerance protocol (as described in the pre-
vious paragraph) is not the one that would allow the
implementation of a deterministic rotation gate. In fact,
the sign of this rotation angle depends on the outcome of
measurements which must (for loss tolerance) be made
after A itself is measured. Thus with equal probability a
rotation corresponding to either A(a) or A(—a) occurs.
Fortunately, by adopting strategies described in Ref. [9]
this effect can be overcome at the cost of a small overhead
in the size of the computation. Note that the measurement
order imposed in the equivalent one-way quantum compu-
tation without loss tolerant encoding (as described in the
introductory paragraphs) must still be respected, as other-
wise one could not determine whether A(«) or A(—a) had
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FIG. 4 (color online). A standard cluster computation requires
measurement of observable A on the indicated qubit, as indicated
in (a). Because of the properties depicted in Fig. 2, either of the
two measurement patterns depicted in (b) and (c) will implement
the desired measurement of A.
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been implemented and thus which corresponding correc-
tion strategy one should employ.

Consider a tree cluster with branching parameters
by, by, b, ..., b,,. The probability of successfully perform-
ing the necessary measurement pattern to implement the A
measurement on such a tree is given by

P=[(1— g+ gR)" = (goR)™](1 — &y + &Ry,
(N

where for k = m
Ry =1—[1—(1— gl — &g+ goRys)l1 1% (2)

and Rm+l =0, bm+l = 0.

The R; are defined as the probabilities of successfully
implementing an indirect Z measurement on any given
qubit found in the ith level. Thus (1 — gg) + gyR; is the
probability of a successful Z measurement on a qubit at
level i. The Egs. (2) can be derived recursively, starting
from the qubits at the bottom of the tree.

The derivation of P can be understood as follows.
Imagine one proceeds along the b, qubits until the A
measurement succeeds on qubit number k. Overall success,
given that the A measurement has succeeded on qubit %,
requires: (i) Successful (direct or indirect) Z measurements
on the b; qubits below qubit k, (ii) indirect Z measure-
ments to succeed on the k — 1 qubits that the A measure-
ment failed on and (iii) direct or indirect Z measurements
to succeed on the remaining b, — k qubits. This leads to an
overall success probability P.

Let us introduce the parameter e.;; = 1 — P to represent
the overall effective loss rate for the tree-encoded logical
cluster qubit. For a range of fixed ¢, and &, we have
performed a numerical search over integer values for the
branching parameters by, by, ..., b,, which minimize the
number of qubits Q required in the tree. These results are
depicted in Fig. 5. (Note the plot is log versus loglog.) We
have shown the abscissa to somewhat extreme values only
to indicate the important scaling. The linear nature of the
plot implies that Q = polylog(1/e.), which demonstrates
that this procedure has the scaling properties required for
proper fault tolerance.

When g, = 0.5, numerical simulations show that e
cannot be lowered from €. This indicates a loss-tolerance
threshold of 50%. This can be understood as follows. If the
above-described scheme could correct loss errors with an
error rate at 50% or higher, this would violate the no-
cloning theorem [10]. To see this, consider a 4-qubit linear
cluster state. Alice is given the first three qubits, and Bob is
given the last, which Bob then immediately encodes in a
tree. Alice makes measurements with bases unknown to
Bob. Now, imagine a third party, Charlie, steals 50% of
Bob’s qubits, chosen at random. This would be indistin-
guishable (to Bob) from the qubits having a 50% loss rate.
If our protocol (with a nondemolition measurement replac-
ing the measurement in basis “A”") allowed this level of
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FIG. 5 (color online). Numerical results showing the number
of qubits required versus the desired effective loss rate. The
different curves, from left to right, correspond to gy = 0.2, 0.3,
0.4, 0.49, respectively.

loss to be tolerated, both Bob and Charlie could produce
“clones” of the state prepared by Alice’s measurements —
violating the no-cloning theorem.

Interestingly, by allowing an adaptive construction of
the tree based on which particular qubits in the first row are
lost, the no-cloning theorem is no longer an obstacle and a
strategy can be found for arbitrarily high loss rates [11].
However, this strategy needs deterministic gate operations
to adaptively build up the tree, which makes it incompat-
ible with nondeterministic cluster state generation schemes
[12-15].

So far, our error model has only explicitly considered
loss errors occurring after the cluster state has been gen-
erated. Fortunately, we can relax that requirement in a
number of practically relevant scenarios. First let us con-
sider cluster state generation via deterministic CPHASE
gates. Loss errors can occur before the CPHASE without
disturbing the efficacy of the loss-tolerance protocol if the
attempted physical entangling operation acts as the identity
(up to a global phase) when only one physical qubit carrier
is present. The loss error takes the state outside of the
computational basis and so the action of an abstract
CPHASE gate is not defined. However, for any physical
implementation of such an operation, this can be assessed
and, indeed, a number of proposed quantum gates, e.g.,
[16], satisfy this criterion.

To confirm the loss correction protocol also succeeds in
this case, recall that obtaining the +1 outcome of a Z
measurement on a given qubit in the cluster leaves the
remaining qubits in a cluster state with the same graph, but
with all edges attached to the measured qubit removed (as
illustrated in Fig. 2(a). This, however, is the same state
which would have been obtained if no entangling opera-
tions on that qubit had been applied or, equivalently, if that
qubit had suffered a loss error before the operations. Thus
in this case loss events before the entangling operation are
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equivalent to loss events afterward, and will be corrected in
the same way.

In linear optical quantum computation, deterministic
CPHASE gates are not available. It is possible to combine
nondeterministic gates with a near-deterministic gate tele-
portation approach [17], or, more efficiently, generate the
cluster state via nondeterministic gates and an appropriate
strategy [12-14]. However, the most resource efficient
approach is to employ so-called nondeterministic ‘“‘fusion
operations’ [13] via polarizing beam splitter networks.
This setup requires a more complicated analysis, but in
this case also, loss errors occurring before and during the
beam splitter network can still be tolerated.

In practice, of course, a quantum computation must be
tolerant to more than loss errors. In this regard there are
several important things to note about our scheme. First,
because of the large overhead in numbers of qubits in the
tree, one might naively expect that the loss tolerance comes
at the expense of creating large sensitivity to depolarizing
noise. In fact, this is not the case. For a start, when
increasing the size of the tree, the vast majority of the extra
qubits will only ever be measured in a Pauli basis. For
example, for an initial loss rate gy = 0.2, to get e =
10719 then non-Pauli measurements will only be attempted
on at most 15 of the qubits forming each tree. Note also that
the vast majority of operations here are in the Clifford
group. Robust fault-tolerant methods of implementing
Clifford operations are well-known (see, e.g., Ref. [18]).

However, additional encoding of these operations is not
even necessary. There is, in fact, a natural robustness
against general errors in our loss-tolerance protocol. This
is because the tree structure leads to a great deal of redun-
dancy. For every qubit, there are a number of different
ways an indirect measurement can be made, e.g., measure-
ments on different subsets of qubits below it on the tree.
These different sets of measurements would, in the ideal
case, all lead to the same result, but the presence of addi-
tional noise will lead to errors. Erroneous indirect mea-
surements will lead to additional logical errors (both local
depolarization and non-Markovian errors [5,7]) in the
computation. Adopting a simple majority voting strategy,
however, significantly decreases the overall error rate. In
fact, the greater the branching ratios in the trees, the lower
the probability of an incorrect majority vote.

Qubits and measurements in the first row of the tree (the
qubits which may need to be measured in a non-Pauli
basis) are not protected from errors (and the negligible
residual error caused by incorrect indirect measurements)
by such a strategy. However, by encoding these qubits
further, using an error-detecting code, more general errors
could be detected and located. The protocol can tolerate
located errors in the same way as losses. The 15-qubit
quantum Reed-Muller code [19] is most suitable for this
task [8] as it is the only code known so far, where the non-
Pauli measurements on the encoded qubit can be achieved
with single qubit measurements.

Our primary purpose in this Letter has been to show that
an extremely high error threshold exists for one of the
primary error mechanisms affecting several quantum com-
putational architectures based on the one-way model. This
is achieved using treelike cluster state structures to imple-
ment counterfactual measurements on qubits which have
undergone a loss error. Our scheme will be relevant to all
realizations of cluster state quantum computation where
qubit loss is an important source of error, especially optical
implementations.
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