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It is shown by microscopic calculations for trapped imbalanced Fermi superfluids that the gap function
always has sign changes, i.e., the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like state, up to a critical
imbalance Pc, beyond which normal state becomes stable, at temperature T � 0. A temperature-versus-
pressure phase diagram is constructed, where the BCS state without sign change is stable only at T � 0.
We reproduce the observed bimodality in the density profile to identify its origin and evaluate Pc as
functions of T and the coupling strength. These dependencies match with the recent experiments.
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Much attention has been focused on Fermion superflu-
idity realized experimentally using neutral Fermion atomic
species, 6Li or 40K [1]. It is achieved by tuning the inter-
action strength via Feshbach resonance. Upon sweeping a
magnetic field H through the resonance situated at H �
832 G in 6Li case, the system exhibits a smooth crossover
behavior from Bose-Einstein condensation at lower side to
BCS at high field side.

Recently, two groups [2,3] have succeeded in producing
Fermionic superfluid in 6Li with the population imbalance,
where two interacting up and down spin species have
different particle numbers. In attractive BCS side (H �
832 G), which we focus on in this Letter, the system shows
a quantum phase transition as a function of the popula-
tion difference, that is the relative polarization P �
jN" � N#j=�N" � N#�. Zwierlein et al. [2,4] assigned a
critical imbalance Pc � 0:71, beyond which normal state
becomes stable, in the resonance experiment at H ’
832 G, and demonstrated (i) Pc decreases as the tempera-
ture T rises; (ii) Pc is proportional to the gap value �, that
is Pc / e��=2kFjaj / � (kF Fermi wave number); and
(iii) The spatial profile of the minority component exhibits
a ‘‘bimodal’’ distribution, which disappears when the sys-
tem becomes normal either above T > Tc (Tc is the tran-
sition temperature) or P> Pc. On the other hand, Partridge
et al. [3] have found another transition at P� � 0:09 at the
same resonance field (832 G).

The problem of the BCS with population imbalance
posed by these experiments has been addressed in various
contexts, ranging from ferromagnetic superconductor
ErRh4B4 [5], heavy-fermion superconductor CeCoIn5

under a field [6], to color superconductivity in dense quark
matter of high energy physics [7]. Among various pro-
posals, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [8,9] is a prime candidate to describe these experi-
ments, where the sign of the spatially varying gap function
��r� changes periodically. This is contrasted with the usual
BCS state in which ��r� keeps a definite sign even though
they might spatially vary in some situations. Here, we call
it the ‘‘BCS’’ state which has a definite sign in the gap
function. The ‘‘FFLO’’ state changes its sign somewhere in

the system, even though both states have spatially varying
gaps due to trapping.

Prior to the present work, there have been papers de-
voted to this problem. However, most works are either an
infinite uniform system without trapping [10], or they do
not consider possibility of the FFLO state [11,12], except
for a few [13]. It is crucial to take into account two effects
simultaneously because we are considering an intrinsically
nonuniform finite system. The energy difference of the
FFLO and the BCS is so subtle because in the FFLO
solution, the sign change occurs only near the surface,
and both spatial profiles are similar at the trap center.

The purpose of this Letter are twofold: (1) to construct a
generic phase diagram in the plane of T versus P and (2) to
characterize each phase by the microscopic calculation
considering a trap. In particular, the origin of the observed
bimodality in minor component, item (iii), can be attrib-
uted to a characteristic of the FFLO state. The derived
phase diagram with the Lifshitz point [14] turns out to be
quite universal where 3 s order lines meet at the tricritical
Lifshitz point [15,16]. A new aspect here is that the popu-
lation in two species is the control parameter, while in
usual condensed matter systems, the relative shift of the
chemical potential is controllable. The resulting phase
diagram shows that at T � 0, the FFLO state is ubiquitous
and always the ground state for any imbalanced cases up to
a critical value. It allows us to understand two critical
values Pc [2] and P� [3] at T > 0 in addition to items (i)
and (ii).

It is convenient to use the Bogoliubov-de Gennes (BdG)
formalism to describe ��r� with population imbalance
under a trap V�r�. Throughout this Letter, we set @ � kB �
1. We consider a cylindrical system with V�r� � 1

2M!r
2,

imposing a periodic boundary condition with the periodic-
ity 5d (d�1 �

���������
M!
p

) along the z-direction. Thus, we are
treating a three dimensional (3D) system, depending on the
radius r and z. In the current work, the longitudinal trap
along the z-axis is absent. The BdG equation for the
quasiparticle wave functions uq�r� and vq�r� labeled by
the quantum number q is read as follows with the local
density of each spin state ���r� (� �"; #) and attractive
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interaction g [17]:

 

K"�r� ��r�
���r� �K�

# �r�

" #
uq�r�
vq�r�

" #
� "q

uq�r�
vq�r�

" #
; (1)

where K";#�r� � �
r2

r
2M� V�r� � g�#;"�r� ��";#, with the

third term being the Hartree term. The self-consistent gap
equation is given by

 ��r� � g
X

q
uq�r�v�q�r�f�"q� �

g
2

��r�Girr
EF
�r�: (2)

Since the chemical potential shift �� � �" ��# causes
the braking of the time-reversal symmetry, the sum in
Eq. (2) is done for all the eigenstates with both positive
and negative eigenenergies [18]. To regularize ��r�, we
have subtracted Girr

EF
, which is the irregular part of the

single-particle Green’s function [19].
In Fig. 1, we show the phase diagram at T � 0 in the

plane of P and the energy gap �0�0� at the trap center for
equal population case normalized by the Fermi energy
EF�0� at the center. It is seen that the critical imbalance
Pc beyond which the normal state becomes stable is line-
arly proportional to �0�0�=EF�0�. This shows that the
critical chemical potential difference ��c is given by
��c=EF � ��0=EF, where the proportional constant �
delicately depends on the dimensionality of the system
and/or the Fermi surface shape. For example, one can
find �1D ! 1 in one dimension [5] and �3D ’ 1:41 in
3D Fermi sphere[20]. Since P � 3

4
��
EF

for the normal state
with 3D Fermi sphere under the assumption ��	 EF,
Pc �

3
4�3D

�0

EF
’ 1:14 �0

EF
, which is also shown in Fig. 1.

This is changed in the presence of the harmonic trap to
Pc �

3
2�ho

�0�0�
EF�0�

because P � 3
2

��
EF�0�

in the normal state.
Our numerical calculation in Fig. 1 shows �ho ’ 1:26.

We note that the linear relation Pc /
�0�0�
EF�0�

is observed
experimentally since the observed phase boundary be-

tween the normal and superfluid states is approximately
exponential behavior, namely, Pc / e��=2kFjaj (see Fig. 5
in Ref. [2]). This agreement must be checked further
experimentally for wider 1=kFjaj region.

This enhanced critical value Pc given by ��c=�0 � �ho

far exceeds other known values, such as the so-called
Pauli-Clogston limiting value ��c=�0 � 1=

���
2
p

signaling
the first order transition from BCS to the normal state, or
BCS-FFLO unstable point ��c=�0 � 2=�, which corre-
sponds to the one-soliton creation energy [5]. This indi-
rectly proves that the present solution of the BdG equation
is stable energetically.

In order to obtain the observed Pc � 0:7 at the reso-
nance [2], we can read off from Fig. 1 that �0�0�

EF�0�
’ 0:38, by

performing the naive extrapolation from the weak coupling
limit. This value is compared with the theoretical estimate
�0

EF

 0:49 by Bulgac et al. [21]. The direct estimation of Pc

at unitarity limit is still open to question.
It is also shown in Fig. 1 that at T � 0 in the stable

superfluid state, the order parameter ��r� always exhibits
the sign change except for equal population (P � 0), that
is, the FFLO state is stable. The sign of ��r� must change
to accommodate excess majority species at T � 0, which is
nothing but FFLO, while at T � 0 the ‘‘magnetization’’
can be accompanied with the nonoscillating pairing via
thermally excited quasiparticles. The �-shift, i.e. sign
change, of the gap function is the essence of the ‘‘topo-
logical doping,’’ important for stripes in high Tc super-
conductors [22]. This is also wellknown in the other
physics fields [23]; The commensurate (C) charge or spin
density waves (CDW, SDW) give way to the incommen-
surate (IC) ones when adding excess carriers. The present
problem is precisely analogous to this C-IC problem,
where IC (C) corresponds to FFLO (BCS).

We are now in position to characterize the FFLO and
BCS states. We show two typical examples of these states
in Fig. 2. In FFLO shown in Fig. 2(a), we can divide the
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FIG. 1 (color online). (color online) Phase diagram in P vs
�0�0�=EF�0�. Circles, squares, and triangles show the FFLO,
BCS, and normal states obtained by our calculation, respectively.
Dotted-dashed line denotes the result of 3D Fermi sphere case
[20]. Star is the experimental date on the resonance (H �
832 G) [2].
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FIG. 2 (color online). Spatial distributions of ��r�, ���r�, and
m�r� for (a) FFLO state (P � 0:44 and T � 0) and (b) BCS state
(P � 0:22 and T=! � 4:0). �0�0�=EF�0� � 0:28. ! is the trap
frequency.
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density distribution into three distinctive regions (I), (II),
and (III) from the center. In ‘‘BCS core’’ region (I), the up
and down spin atoms are nearly equal and balanced. The
population of down spin atoms is enhanced and pulled up
by mutual attraction. The gap develops fully there and the
magnetization m�r� � �"�r� � �#�r� almost vanishes. In
‘‘FFLO’’ region (II,) the gap function changes its sign,
allowing it to accommodate the excess majority species.
These features give rise to (A) the bimodal distribution in
the minor component (see a shoulder of �#�r� in lower
panel of Fig. 2(a)] and (B) a sharp peak structure in m�r�
at r=d
 2:7. These features, which are observed experi-
mentally , come from the sign changes of ��r�. We note
that the ordinary BCS region (I) is describable with the
local density approximation [11], while the oscillating
pairing in (II) results from only the full numerical calcu-
lation of the BdG Eq. (1). In ‘‘complete polarization’’
region (III), the gap is almost vanishing, and there is no
minority species. Thus the complete polarization is at-
tained there.

These characteristics (A) and (B) are indeed observed
experimentally [2]. Note that experimental data [2] are
obtained by the columnar integrated density distributions,
yet they show prominent bimodality and sharp peak struc-
tures, implying that the actual three dimensional features
are sharper.

These characteristics in the FFLO are contrasted with
those in the BCS shown in Fig. 2(b); The gap has a definite
sign, and the two density profiles for two species are
smooth and scaled to each other. At T > 0, the difference
�"�r� � �#�r� � m�r� appears by thermal excitations. The

outer edge contains only the up spin atoms where the gap
vanishes. The resulting m�r� has no sharp feature. The
minority distribution ceases to exhibit the bimodality.
These features are almost the same as those in the normal
state given by the Thomas-Fermi profile. These features are
observed either in the region P> Pc � 0:7 in Ref. [2] or
P< P� � 0:09 in Ref. [3].

In order to better characterize the FFLO, we display
series of changes both j��r�j and m�r� at T � 0 in Fig. 3.
It is seen that as P increases, the periodicity of the oscil-
lations in ��r� relatively stays constant, and the number of
the sign change increases. As for m�r�, with increasing P
the double peak structure changes into a single peak above
Pc, signalling phase transition from the FFLO state to the
normal state. We can see small and faint features in m�r�
corresponding to the sign change of ��r�.

In Fig. 4, we show the phase diagram in the plane of
T=Tc0 versus P=Pc0, where Tc0 is the transition tempera-
ture at P � 0 and Pc0 is the critical imbalance at T � 0.
This is determined by solving Eqs. (1) and (2) for various T
and P, where circle (square) shows the FFLO (BCS) state
and inverted triangle is the normal state. All lines indicate
the second phase transitions which meet at a tricritical
point L known as the Leung point, or Lifshitz point in
more general context [14]. The BCS-FFLO line starts right
from P � T � 0, implying that the ground state is always
FFLO when P � 0 as mentioned above. The BCS appears
only at a finite T. From Eqs. (1) and (2), it is easy to de-
rive the equation for Tc, or the boundary between the
superfluid and normal state as a function of P, namely,
1 � g

R
dr
R
dr0���r��K�r; r0� � ��r � r0�Girr

EF
�r����r0�,

where

 K�r;r0� �
X
q;q0

f�"q�� f�"q0 �

"q�"q0
uq0 �r�u�q0 �r

0�v�q�r�vq�r0�: (3)

The gap function ��r� / ��r� is normalized asR
drj��r�j2 � 1. Using ��r� for the BCS state, we esti-

mate Tc. The results are also plotted in Fig. 4 as the dashed-
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FIG. 3 (color online). Spatial distributions of j��r�j (a) and
m�r� (b) for various P’s. �0�0�=EF�0� � 0:28 and T � 0. The
normal state appears for P> Pc � 0:57. The dotted-dashed lines
show the nodes of ��r�.
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dotted line, showing a good agreement with the full nu-
merical computation. We have confirmed that Tc in FFLO
becomes higher than that in BCS beyond the Lifshitz point,
proving the stability of FFLO over BCS.

According to the experiment [2], Pc�T� decreases
as T increases for three magnetic fields (H � 832, 883,
and 924 G). More quantitatively, at the resonance,
Pc�T�=Pc0 � 0:86 at T=TF � 0:12 [4], which is indicated
in Fig. 4, estimated within the experimental value on the
resonance [24]: Tc0=TF � 0:27. These agree with our re-
sults. It is interesting to notice that under a fixed tempera-
ture, say, T=Tc0 � 0:3 as P increases, BCS changes into
FFLO at P=Pc0 � 0:1 and upon further increasing P,
FFLO finally becomes unstable at P=Pc0 ’ 0:9. It is rea-
sonable that there are two transitions observed by Partridge
et al. (P� � 0:09) [3] and Zwierlein et al.. (Pc � 0:71)
[2,4] at the same resonance field (H � 832 G). The former
(latter) is BCS-FFLO (FFLO-normal) transition.

This phase diagram shown in Fig. 4 is quite generic,
which describes various physical systems, such as CDW,
SDW, or stripe phase in high Tc superconductors [22], but
usually expressed in terms of T vs ��. Here the population
imbalance is a control parameter of the system. This phase
diagram in T vs P is qualitatively the same for other
coupling strengths or �0�0�=EF�0� or 1=kFjaj. Figure 5
displays a schematic phase diagram in T, P and 1=kFjaj of
the attractive side only. In T vs 1=kFjaj plane, the phase
boundary shows Tc0 / e

��=2kFjaj. The phase boundary in P
vs 1=kFjaj plane is also an exponential behavior because
Pc / �0.

Since it is rather difficult to distinguish between the
FFLO and BCS only from the density profiles, we defi-
nitely need further experimental probes to identify each
phase. According to Ref. [2] vortices in the outer region,
(II) and (III) become invisible, while only in (I) visible
vortices are sustained. The quantum depletion of particle
density at a vortex core only occurs when �=EF becomes
large enough [25,26]. Excess majority species in region (II)
fill out the vortex core preferentially, making a vortex
invisible through the density profile measurement even
though the phase of ��r� winds around.

In conclusion, we have constructed a generic phase
diagram in T vs P and explained various experimental
aspects, including items (i)–(iii). We have approached
the strong coupling limit problem on resonance from the

weak coupling using the BdG formalism by assuming that
there is no phase transition between them. An understand-
ing of the critical imbalance 0.7 from first principles is an
outstanding problem, which belongs to future work.
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