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The s � 1 spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that
combine magnetic and superfluid ordering. We analyze the topological defects of the polar condensate,
correcting previous studies, and show that the polar condensate in two dimensions is unstable at any finite
temperature; instead, there is a nematic or paired superfluid phase with algebraic order in exp�2i��, where
� is the superfluid phase, and no magnetic order. The Kosterlitz-Thouless transition out of this phase is
driven by unbinding of half-vortices (the spin-disordered version of the combined spin and phase defects
found by Zhou), and the anomalous universal 8Tc=� stiffness jump at the transition is confirmed in
numerical simulations. The anomalous stiffness jump is a clear experimental signature of this phase and
the corresponding phase transition.
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Bose condensates of atoms with nonzero total spin, such
as 87Rb [1] and 23Na [2], have recently been the focus of
intense experimental and theoretical study. The hyperfine
degree of freedom in these systems allows complex
ordered states, distinct from those occurring in more con-
ventional systems of spinless bosons and combining super-
fluidity with different types of magnetic behavior. The
dynamics and topological defects of such states can be
observed either destructively or in situ [3,4]. In particular,
the experimental study of two-dimensional condensates
has been of special interest recently for at least three
reasons: The superfluid transition in two dimensions (2D)
is of the unconventional Kosterlitz-Thouless (KT) type
[5] (i.e., driven by unbinding of vortex defects); two-
dimensional superfluids have power-law correlations of
the quantum phase, rather than true long-range order; and
two-dimensional models are appropriate for some current
experiments [4,6].

Topological defects and ordered phases in the s � 1
(i.e., total spin F � 1) spinor condensate have been dis-
cussed theoretically in many papers since the work of Ho
[7] and Ohmi and Machida [8]. Experimentally, s � 1
systems are realized using atoms of 23Na, 39K, and 87Rb
with nuclear spin I � 3=2. In this Letter, we resolve the
nature of the topological defects in the polar or antiferro-
magnetic phase by explicitly obtaining the order-parameter
manifold and its first homotopy group, then show that a
new phase results in any polar s � 1 condensate at finite
temperature in 2D. For the polar phase, Zhou [9] found the
order-parameter manifold �U�1� � S2�=Z2 by noticing a
Z2 symmetry omitted in the earlier work of Ho [7]
but obtained an incorrect first homotopy group [10]; that
this homotopy group was incorrect was shown by Makëlä
et al. [11], but these authors claimed that Zhou’s order-
parameter manifold was also wrong. We show that Zhou’s

order-parameter manifold is correct but has the homotopy
groups obtained indirectly in Ref. [11].

These topological defects are crucial because they create
a new phase in two dimensions: We find that the 2D polar
condensate is unstable to a paired or nematic phase at any
finite temperature. This phase has algebraic order in 2�,
where � is the superfluid phase, no spin order, and a
Kosterlitz-Thouless superfluid transition driven by uncon-
ventional topological defects (half-vortices). It has a clear
experimental signature: an anomalous superfluid stiffness
jump, which can be observed in an optically trapped con-
densate by the approach used by Hadzibabic et al. [12] to
measure the conventional stiffness jump.

The Hamiltonian for the s � 1 spinor condensate is [7]
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where a, b, a0, b0 run from mz � �1 to mz � �1,M is the
mass of the bosons, U�r� is the trapping potential, and c2

and c0 are constants that depend on the strengths of the
singlet and triplet scattering amplitudes. The matrices F
are the SU�2� generators in the s � 1 representation.

The mean-field ground states for U�r� � 0 are homoge-
neous and unfragmented in the thermodynamic limit and
can be decomposed using  �

�����
n0
p

� , where � is a normal-
ized spin-1 spinor [7,13]. For c2 > 0, the ground state is
‘‘polar,’’ and, for c2 < 0, the ground state is ‘‘ferromag-
netic’’; any polar state spinor �P and any ferromagnetic
state spinor �F can be obtained from simple reference
states using a phase � and a rotation matrix U in the s �
1 representation of SU�2�:
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The decomposition into phase � and rotation matrix U is
not unique.

Topological defects in spinor condensate phases can be
understood from homotopy groups of the order-parameter
manifold [14]. The order-parameter manifold in the iso-
tropic polar case has been previously studied: The original
paper of Ho [7] found a U�1� � S2 manifold, where the
U�1� (sometimes written as S1) denotes the manifold of
values of the superfluid phase �, and the S2 refers to
directions n̂ of the magnetic axis. Later work [9] pointed
out an additional Z2 symmetry (�! �� �, n̂! �n̂)
leading to the order-parameter manifold M � �U�1� �
S2�=Z2 with defects that combine a half-vortex of the phase
with a rotation from n̂ to �n̂.

We now derive M from basic principles, showing that
the subsequent claim of a different manifold [11] is incor-
rect, but we find that the previously obtained homotopy
groups [10] of M are incorrect and that the actual homo-
topy groups are those of Ref. [11]. The key result, for
readers interested in the nematic superfluid phase, is the
existence of phase half-vortices. The overall symmetry
group of an s � 1 condensate is G � SO�3�S �U�1�G,
where the subscripts indicate spin and gauge (phase) de-
grees of freedom. First consider the simpler ferromagnetic
case: All states in this manifold can be obtained by a
symmetry operation G on the reference state �1; 0; 0�.
This state is left invariant by the group of operations (the
residual group) corresponding to an SO�3� rotation by an
angle � along the chosen z axis and an overall phase shift
of �� [� 2 �0; 2��]. The residual group is thus H �
U�1�, and the order-parameter manifold is G=H 	 SO�3�.

The manifold SO�3� for the ferromagnetic case also
appears in the dipole-locked A phase of 3He, and the
topological defects are well understood [14]. Consider
the polar case: For the polar reference state �0; 1; 0�, the
residual symmetry group H has two disconnected parts:
rotations about z and rotations about z followed by a
rotation about x (or y) by � and multiplication by �1.
The resulting order-parameter manifold G=H can be writ-
ten abstractly as [11] M0 � �SO�3�S �U�1�G�=O�2�S�G,
sinceH 
 O�2�. However, points onM0 can be represented
by a combination of a direction vector n̂ on S2 and angle �
with �n̂; �� and ��n̂; �� �� identified, so M0 � M.

We write this identification as ZG�S2 to stress that it links
the gauge and spin symmetries: The resulting order-
parameter manifold is

 M �
U�1� � S2

ZG�S2

� U�1� �
S2

Z2
� Mn: (3)

That �1 for the polar state must equal Z was shown
indirectly before [11], but it was also claimed that M0 �

M; the form for M is now used to prove explicitly that
�1�M� � Z, not Z� Z2 � �1�Mn� as claimed in
Ref. [10], and discuss the energetics of vortices.

Consider a closed path in M. The starting point in M is
covered by two points of M2 � U�1� � S2: Pick one of
these points and trace out the preimage in M2. Either this
path returns to the same point in M2 or to the other
identified point. In the first case, the path is identified
with an element of �1�M2� � Z: It wraps an integer num-
ber of times around the U�1� part. In the second case, the
path wraps a half-integer number of times around the U�1�
part and moves from the initial point on the sphere to the
antipodal point. Identify these paths with the 2-tuple �n; e�
in the first case, where n is an integer, and (n� 1

2 , g) in the
second case, where g2 � e. Concatenation of paths is then
equivalent to addition in the first component and Z2 multi-
plication in the second, but the second entry is redundant
and �1�M� � Z.

Note that, although �1�M� � Z, just as for usual super-
fluid vortices, the fundamental vortex in M combines both
half a superfluid vortex and a magnetic inversion. Odd
vortex number in �1�M� means that the superfluid phase
winds around the vortex by an odd multiple of �, while the
magnetic axis goes from n̂ to�n̂. Only the vortices with an
even vortex number survive when an anisotropy field fa-
vors mz � 0: These are ordinary vortices of the mz � 0
component. Since U�1� � S2 is a covering space of M, all
higher homotopy groups are direct products �n�M� �
�n�U�1�� � �n�S

2�: �2�M� � �3�M� � Z, so in 3D there
are line defects, point defects, and coreless structures [15].

The energies of the combined spin-superfluid defects
described by the odd elements of �1�M� can be compared
with those of normal superfluid vortices at T � 0 using
Eq. (1). We ignore the finite vortex core energy in favor of
the energy of the surroundings, which is log-divergent in
2D. The only contribution comes from the jr�j2 term and,
using the explicit spinors [7], gives, for stiffness K,

 L �
Z
d2x

K
2
��rn̂�2 � �r��2�: (4)

The energy for the ordinary superfluid vortex is

 E �
Z 1
a
�Kr�2�=2�r�2 � �K log�L=a�; (5)

where L is the system size and a the core size. For the
anomalous (combined) vortex, the energy cost is only half
as large: There are now two angular variables involved, but
each runs over an angle � rather than 2�.

A starting point to treat thermal fluctuations is the non-
linear sigma model (NL�M) on the order-parameter mani-
fold. For the ordinary superfluid, this manifold isU�1�: The
manifold is flat and the coupling is constant under
renormalization-group transformations, which underlies
the existence of a Gaussian phase and finite-temperature
KT transition [5]. The ferromagnetic manifold SO�3� �
S3=Z2 is locally identical to S3, which is curved in all three
directions and flows to weak coupling [16]: No order is
expected at T > 0.

The polar state manifold �S2 �U�1��=Z2 is more inter-
esting: Locally, it is the same as S2 �U�1�, which has a
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Kosterlitz-Thouless transition for the U�1� phase but no S2

order at finite temperature. The renormalization-group
flows (i.e., � functions) to all orders are unaffected by
the Z2 identification, but the vortices in the superfluid
phase now carry half the normal quantum of vorticity.
Since the NL�M analysis neglects amplitude fluctuations,
it is desirable to check that such a phase actually exists: A
prediction of the above analysis of the isotropic polar phase
is that the finite-temperature KT transition should be me-
diated by half-vortices of the phase.

The algebraically ordered state below the KT transition
has algebraic correlations of e2i�, not ei�, as � is only
defined modulo �. Note that this finite-temperature
sigma-model analysis for both phase and spin is distinct
from the zero-temperature analysis of spin with quantum
fluctuations [9,17] and from spin nematic phases of bosons
in optical lattices [18]: The state we find at finite tempera-
ture is an algebraically ordered nematic superfluid with no
spin order and gapless excitations. A transition mediated
by half-vortices is also found for spinless bosons near a
Feshbach resonance [19].

To picture this state, suppose that e2i� had an expectation
value rather than algebraic order: Locally, each component
 � averages to zero, but the spin-singlet combination
 0 0 � 2 �1 �1 � �e2i� � 0 and the total current can
be nonzero:

 j s �
@

2iM
 �r � �

@�r�
M

: (6)

Such a state can be thought of as nematic, since order is
present only in 2�, or paired, since the order appears in a
two-boson operator if  represents individual bosons.

A direct check on the above scenario is that the
Kosterlitz-Thouless transition will occur when half-
vortices unbind. The KT jump in the renormalized stiffness
or ‘‘helicity modulus’’ at the transition must therefore be
4 times larger than the conventional value:

 �c � 4�0
c �

8Tc
�
: (7)

The superfluid stiffness jump by �0
c in superfluid helium

was observed by Bishop and Reppy [20]. Recently, the KT
transition of a spinless atomic Bose-Einstein condensate
was observed [12]: The prediction that an isotropic s � 1
polar condensate will have a jump 4 times as large is a
direct experimental test for the superfluid nematic phase.

Numerical Monte Carlo simulations of the polar phase
(Fig. 1) reveal a jump in the helicity modulus compatible
with the enhanced value [Eq. (7)] in the thermodynamic
limit and clearly distinct from the conventional jump �c0.
An additional check is provided by turning on spin-space
anisotropy. The complete phase diagram with spin-space
anisotropy introduced through the term

 H0 �
Z
drg2� 

y
�1 �1 �  

y
�1 �1� (8)

is shown in Fig. 2. In the polar case c2 > 0, with mz � 0
favored (g2 > 0), an ordinary KT transition occurs and is

observed numerically. With mz � �1 favored (g2 < 0),
the order-parameter manifold is reduced to �U�1� �
U�1��=Z2, where half-vortices of the in-plane spin are
bound to half-vortices of the phase, and for weak anisot-
ropy the anomalous jump survives. The experimental
source of this anisotropy is the quadratic Zeeman coupling
to an external field.

The numerics use the Ginzburg-Landau free energy

 F �
Z
dr
�
��r a�

�r a� � a0�T � T
MF
c � 


a a

�
c0

2
 a 


b b a �

c2

2
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a0Fab � Fa0b0 b0 b

� g2� 
y
�1 �1 �  

y
�1 �1�

�
; (9)
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FIG. 1 (color online). (Top) Helicity modulus � as a function
of temperature for a set of fixed values of the parameters, � �
0:5, a0 � 4:0, TMFc � 1:0, c0 � 10:0, c2 � 3:0, g2 � 0 [see
Eq. (10)] for different system sizes. The two lines are 8T=�
and 2T=�. (Bottom) The goodness of fit R2 to Eq. (11) for
different sets of system sizes as a function of temperature. The
asterisks and crosses correspond to sets with system sizes 6, 8,
10, 12, 14, 16, 18, 20 and 10, 12, 14, 16, 18, 20, 24, 32,
respectively.
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in which the KT transition temperature (TKT) is renormal-
ized below TMFc by the quartic terms. The transition is
identified via the jump in the helicity modulus �, defined
by introducing a twist � in the phase � in (2):

 � �
��
@2F

@�2

�
�

1

kBT

��
@F
@�

�
2
������������0

: (10)

Metropolis Monte Carlo simulations were performed for
square lattices with sizes varying from 6� 6 to 64� 64.
109 Monte Carlo steps were used at each value of tempera-
ture for equilibration and calculation of the helicity
modulus.

The plot of � as a function of temperature T, for c2 > 0,
and g2 � 0 (no anisotropy) for different system sizes N is
shown in Fig. 1. A jump in � is clearly visible for the larger
systems. The two lines have slopes 8T=� and 2T=�, and
the jump is near the intersection of the former with the �
curves. To establish a KT transition and locate Tc, the
finite-size scaling of ��N; T� is investigated. The same
procedure was used for the KT transition in the XY model
[21]. The helicity modulus scales as N ! 1 as

 ��N; Tc� � �1

�
1�

1

2

1

lnN � C

�
: (11)

Here �1 ( � 8Tc=�, in this case) is the value of the jump in
the helicity modulus in the thermodynamic limit and C is a
constant. Even though Eq. (11) is strictly valid only for
large values of N, it is found to hold even for small values
in the case of the regular KT transition. ��N; T� for differ-
ent values of N and T is fit to the expression Eq. (11) with
C as an adjustable parameter. The goodness of fit R2 for
different sets of system sizes N as a function of tempera-
ture T is plotted in Fig. 2. There is a minimum in the value
of R2 at a temperature T � 0:0757, which is identified with
TKT. The value TKT is robust against the choice of different

sets of system sizes N for the fit. A similar procedure was
carried out with a value of �1 � 2Tc=�: No such mini-
mum was found to exist in the vicinity of a corresponding
normal KT transition. This offers strong evidence of the
existence of an anomalous KT transition and the nematic
superfluid phase.

To conclude, we have obtained the order-parameter
manifold and topological defects of the polar s � 1 spinor
condensate. Using a NL�M analysis of this order-
parameter manifold together with numerical Monte Carlo
simulations, we have demonstrated the existence of a low
temperature spin-disordered phase with quasi-long-range
phase order. The KT transition out of this phase, driven by
unbinding of half-vortex defects, can be detected experi-
mentally by its anomalous 8Tc=� stiffness jump.
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FIG. 2 (color online). The phase diagram of the ground state of
the F � 1 spinor condensate with uniaxial anisotropy [Eq. (3)].
The order-parameter manifold is shown for each phase. Here k
and ? denote in-plane and out-of-plane ordering, respectively.
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