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The first step in any quantum key distribution (QKD) protocol consists of sequences of measurements
that produce correlated classical data. We show that these correlation data must violate some Bell
inequality in order to contain distillable secrecy, if not they could be produced by quantum measurements
performed on a separable state of larger dimension. We introduce a new QKD protocol and prove its
security against any individual attack by an adversary only limited by the no-signaling condition.
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Since its invention in 1984 by Bennett and Brassard [1],
quantum key distribution (QKD) has led to a change of
paradigm with respect to the existing classical crypto-
graphic schemes. While the latter ones base their security
on mathematical assumptions, the security of QKD relies
on the fact that the devices of the legitimate parties, Alice
and Bob, and of the eavesdropper, Eve, are governed by
quantum physics. Then, security proofs of QKD schemes
exploit well-established quantum features such as the no-
cloning theorem, or the monogamy (i.e., nonshareability)
of entanglement. The common structure in all these
schemes is the following: Alice and Bob first establish
some correlation, for instance by performing some mea-
surements on a quantum state or, equivalently, by Alice
sending some quantum states that are later measured by
Bob [2]. Next, exploiting the quantum formalism, Alice
and Bob bound Eve’s information and distill a secret key
by public communication. Formally, a correlation is a
conditional probability distribution P�a; bjx; y�, where a
and b are Alice and Bob’s output data, respectively, and x
and y are their choices of inputs. For instance, x and y
could be their choice of measurement settings and a and b
the obtained results.

There is, however, an extra assumption in most of the
existing QKD protocols: Alice and Bob know how the
correlation P�a; bjx; y� has been established. For example,
in a photon-polarization implementation of the Bennett-
Brassard 1984 (BB84) protocol [1]. Alice knows she sends
photons in two polarization bases, z and x, that are mea-
sured by Bob in the same bases. In other words, Alice and
Bob trust their devices [3]. This often implicit assumption,
as discussed below, is crucial for the security of standard
QKD. Therefore, all security proofs of QKD are based on
(i) the validity of the quantum formalism plus the assump-
tion that (ii) the legitimate partners perfectly know how
their correlation is established, e.g., they know the dimen-
sions of the Hilbert space describing their quantum sys-
tems. Indeed, all the security proofs of existing QKD
schemes heavily exploit the Hilbert-space artillery of quan-
tum physics. Experimentally, additional Hilbert-space di-

mensions can correspond to ‘‘side channels,’’ i.e., to
degrees of freedom coded accidentally. For example, in
photon-polarization coding, the wavelength could be acci-
dentally correlated to the state of polarization.

It is desirable to have key distribution schemes where
assumption (ii) is not needed for the security. In such
schemes, Alice and Bob should just exploit a well-
established physical principle to extract a key from some
observed correlation, P�a; bjx; y�, without having to care
about the practical details needed for the correlation dis-
tribution [4]. Standard QKD proofs do not fit into this
desired picture. Indeed, an immediate necessary condition
for some correlation to be secure in this device-
independent scenario is that P�a; bjx; y� should not allow
a description in terms of local classical variables:
P�a; bjx; y� �

P
�p�P�ajx; ��P�bjy; ��. If not, the adver-

sary Eve may hold a copy of the �’s. This necessary
condition implies that the correlation P�a; bjx; y� must
violate a Bell inequality [5]. Thus, any security proof of
QKD in this more general scenario should make a direct
use of quantum nonlocality [6,7]. Note that the correlation
corresponding to the well-known BB84 protocol [1] does
not satisfy this condition.

In this Letter, we present a new 4-state QKD protocol
directly built from data violating the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality [8]:

 

P�a0 � b0� �P�a0 � b1� �P�a1 � b0� �P�a1 � b1� � 3;

(1)

where P�aj � bk� � P�a � b � 0jx � j; y � k� �
P�a � b � 1jx � j; y � k�. Hence we name our new pro-
tocol the CHSH protocol. Following the ideas introduced
in [9], we demonstrate its security against any individual
attack by any adversary only limited by the no-signaling
condition. The no-signaling condition says that local prob-
abilities are independent of distant partner’s inputs, e.g.,

 P�ajx; y� �
X
b

P�a; bjx; y� � P�ajx�: (2)
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This principle severely limits the set of possible correla-
tions. For finite alphabets of inputs and outputs, the set of
all these correlations is convex with a finite number of
extreme points; hence it is a polytope.

The choice of the no-signaling principle for proving the
security of our protocol is twofold. First, it is perhaps the
strongest physical principle. Actually, Eve could be supra-
quantum, since there are nonsignaling correlations not
achievable using quantum states [10]. Second, it allows
one to study key distribution based on physical assump-
tions beyond quantum physics, as shown in [9]. Indeed,
thanks to the seminal paper by Popescu and Rohrlich [10],
it was realized that one can study nonlocality without
Hilbert space using the no-signaling principle. Several
recent papers explore this new avenue [11–14].

Before proceeding, let us illustrate on the BB84 protocol
the necessity of a Bell inequality violation for security.
Ideally, in the noise-free case, the BB84 correlation sat-
isfies P�a � bjx � y� � 1 and P�a � bjx � y� � 1=2. If
such correlation results from measurements in the x and z
bases on qubit pairs, then the state of these two qubits is
necessarily maximally entangled and security follows.
However, the same correlation can also be reproduced by
the four-qubit state:

 �AB �
1
4�j00ih00jz � j11ih11jz� � �j00ih00jx � j11ih11jx�:

(3)

Here, Alice holds the first and third qubit. Whenever she
measures in the z (x) basis, she is actually measuring the
first (third) qubit in this basis. The same happens for Bob,
with the second and fourth qubit. Clearly, their measure-
ment results are completely correlated when the bases
agree and uncorrelated otherwise, precisely as for the ideal
BB84 case. However, their state is separable, so a secure
key cannot be established. The BB84 protocol becomes
insecure even in the ideal noise-free situation.

It is now time to present the proposed CHSH protocol.
Alice and Bob have for each realization the choice between
two measurements with binary outcomes. It is essential
that the obtained correlation violates the CHSH inequality
(1). For example, Alice and Bob could share a Werner state
�W � WP�� � �1�W�1=4, with visibility W, where
P�� denotes the projector onto j��i � �j00i � j11i�=

���
2
p

,
and perform the measurements that maximize the violation
of the CHSH inequality (1). However, any other way to
obtain data violating (1) is equally good. Violation of (1)
implies that in three out of the four measurement choices,
Alice and Bob are correlated [the three first terms in (1)],
though not necessarily maximally, while in the fourth case
they are anticorrelated. Therefore, the analog of basis
reconciliation goes as follows: Bob announces all his
measurement settings y, and Alice keeps all her data, but
for the case of anticorrelation, she flips her bit. Let us
denote by P�a; bjx; y� and ~P�a; bjx; y� the correlation be-
fore and after this basis reconciliation. Compared to the
BB84 protocol, the partners keep all data; however, even in

the ideal noise-free case, the correlation is not maximal:
~P�a � bjx; y�< 1. In the sequence, we limit our analysis
to isotropic raw correlations with visibility V, without loss
of generality [15]:

 P�a; bjx; y� � V1
2��a� b � xy� � �1� V�14; (4)

where ��r � s� � 1 whenever the equality holds modulo 2,
and 0 otherwise. For V � 1=

���
2
p

, such correlations can be
distributed by quantum physics (e.g., by a Werner state
with W �

���
2
p
V). For V > 1=2 they violate the Bell in-

equality (1), so there are no local variables that Eve could
hold.

As usual, we conservatively assume that the distribution
of the correlation is done by Eve. Any attack consists thus
of a three-party distribution P�a; b; ejx; y; z� whose mar-
ginal is (4)

 P�a; bjx; y� �
X
e

P�a; b; ejx; y; z�

�
X
e

P�ejz�P�a; bjx; y; z; e�; (5)

where for the second equality we used the no-signaling
condition: Eve’s output e is independent of Alice and
Bob’s inputs x and y. Note that the no-signaling condition
implies that even if Eve and Bob collaborated, they could
not get any information about Alice’s input x [6]. We can
restrict our considerations to attacks where Eve prepares
extreme points of Alice and Bob’s no-signaling polytope.
Indeed, consider an attack where some of the terms appear-
ing in Eq. (5) do not correspond to extreme points of this
polytope. These terms can be expressed as a convex com-
bination of extreme points:

 P�a; bjx; y; z; e� �
X
�

Pext�a; bjx; y; z; e; ��P���: (6)

Giving the knowledge of � to Eve, one has an attack
consisting of extreme points that is, at least, as good as
the previous one, since [cf. (5)],

 P�a; bjx; y� �
X
e;�

P�e; �jz�Pext�a; bjx; y; z; e; ��: (7)

We need to recall now some facts about nonsignaling
correlations with binary input and output. Barrett and co-
workers proved that in the binary case, the number of
extreme nonsignaling correlations is very limited [11]. If,
moreover, one concentrates on the correlations that violate
the CHSH inequality, one finds a unique extreme correla-
tion that violates it; this is the isotropic correlation (4) with
V � 1. This correlation appears in the literature as
Popescu-Rohrlich box [11], or nonlocal machine [12] or
unit of nonlocality [13]. Finally, there are 8 local extreme
deterministic correlations, P�a; bjx; y� � PD�ajx�PD�bjy�,
that saturate the inequality (1); see Fig. 1.

For the local correlations, Eve knows the measurement
outcomes a0, a1, b0, and b1. However, if Alice and Bob
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share a nonlocal machine, they have the guarantee of
perfect monogamy, because Eve cannot be correlated at
all [11]. Eve’s optimal attack then consists of the combi-
nation of extreme points that mimics Alice and Bob’s
correlation with the minimal weight for nonlocal points.
Therefore, she prepares only those local points that are
closer to Alice and Bob’s correlation. This can be easily
understood in Fig. 1: in order to reproduce the quantum
correlation observed by Alice and Bob, represented by a
square, Eve should send an equal mixture of the eight local
points lying on the facet, plus the nonlocal machine on top
of it. In what follows pNL denotes the probability that Eve
prepares a nonlocal machine. The Bell violation observed
by Alice and Bob fixes the value of pNL � 2V � 1. When
the observed data are local, Eve can mimic them with
deterministic local points. However, when the correlation
is nonlocal, Eve is forced to sometimes send a nonlocal
machine, in which case she holds no information about
Alice’s symbol a because of the no-signaling principle.

The resulting tripartite probability distribution, after
basis reconciliation, is summarized in Table I, where pL �
1� pNL. Eve’s information on Alice and Bob’s symbols is
represented by two variables (ea, eb). The value at each
position of the table gives the probability for the corre-
sponding outcomes, e.g., P�a � 0; b � 0; e � �?; 0�� �
pL=8. Since only Bob announces his measurement, Eve
sometimes has full information on Bob’s but not on Alice’s
symbol after the basis reconciliation, even if her prepara-
tion was local. For instance, this is the case when Bob
announces y � 1 and Eve has prepared a local point where
a0 � a1. Moreover, one can see that, due to the properties

of the local points lying on the CHSH facet, Eve knows
both symbols only when a � b.

Once the optimal individual attack has been determined,
one can study the secrecy properties of the resulting proba-
bility distribution. The detailed calculation of these results
will be given in a forthcoming paper [16]. Here we merely
summarize our findings.

A positive secret key rate is achievable with one-way
communication protocols. Since Bob announces his bases
y, Eve’s information on his symbol is larger than on
Alice’s. Consequently, the flow of information has to go
from Alice to Bob. From Table I, one has that Bob’s error
probability is "B � pL=4, while I�A:E� � pL=2. Ac-
cordingly, the one-way key rate, K!, satisfies [17]

 K! � I�A:B� � I�A:E� � 1� h�pL=4� �
pL
2
; (8)

where h is the binary entropy. This quantity is positive for
pNL * 0:318. The quantum region is given by pNL ����

2
p
� 1 ’ 0:414. This implies that some correlations that

can be distributed by quantum states provide secret key
secure against any no-signaling adversary (not necessarily
restricted to quantum physics).

The secret key rate achievable with the two-way advan-
tage distillation protocol of [18] is positive if pNL > 1=5.

All correlations violating the CHSH inequality contain
secrecy, not in the sense that a secret key can necessarily be
generated from them, but in the weaker sense that they
could not be broadcast without consuming secret bits.
Indeed, the intrinsic information I# � I�A:B # E�, which
measures the amount of secret correlations in a probability
distribution [19], is positive for the whole region of the Bell
violation:

 I# �
�

1�
pL
2

��
1� h

�
pL

4� 2pL

��
: (9)

Preprocessing by Alice and Bob, consisting in applying
random flips to their data as studied in Ref. [20], helps.
Using preprocessing, the one-way key rate as a function of
the disturbance D in the quantum channel is shown in
Fig. 2. The disturbance is defined in the standard way,
namely, D � 0 corresponds to a perfect channel, and

FIG. 1. Pictorial representation of nonsignaling correlations
P�a; bjx; y� for binary inputs and outputs. The closed thick line
defines one of the facets of the polytope of local correlations,
corresponding to the CHSH inequality. All the extreme points
lying on this facet are also extreme points of the more general
polytope of nonsignaling correlations. Only one extreme point is
on top of the CHSH facet, given by the nonlocal machine. The
curved line schematically represents the region of points achiev-
able using quantum states. Isotropic correlations (4) lie along the
vertical line starting from the nonlocal machine and entering the
local polytope through the center of the CHSH facet. In the
optimal eavesdropping attack, Eve simulates Alice and Bob’s
correlation, square point, by the mixture (i.e., convex combina-
tion) of extreme points of the nonsignaling polytope, circles in
the figure.

TABLE I. Eve’s optimal individual attack. Alice and Bob’s
variables are binary, while Eve’s information can be represented
by two ternary variables, ea; eb � 0; 1; ?. The value ‘‘?’’ denotes
those cases where she has no information. For example, �?; 0�
means that Eve knows b � 0 but not a.

b 0 1
a (e)

�0; 0� pL=4
0 �?; 0� pL=8 �?; 0� pL=8

�?; ?� pNL=2
�1; 1� pL=4

1 �?; 1� pL=8 �?; 1� pL=8
�?; ?� pNL=2
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pNL �
���
2
p
�1� 2D� � 1. The critical disturbance is D &

6:3%. In the case of two-way communication with prepro-
cessing, a positive key rate is obtained when D & 11:36%,
or pNL * 0:093, still not sufficient to cover the whole
region of the Bell violation.

All this analysis leaves as an open question whether
secret key distillation is possible for all pNL > 0. This is
a difficult question because no lower bound on the secret
key rate achievable with two-way communication is
known. We investigated all known protocols and found
that the optimal consists in the combination of preprocess-
ing followed by advantage distillation, which gives pNL *

0:093. A consequence of these findings is the following
interesting alternative: the probability distribution of
Table I, for a small Bell violation, either contains bipartite
bound information [21] or is distillable using a new
technique.

To summarize, usual security proofs of QKD are based
on (i) quantum physics and (ii) the perfect knowledge of
the physical devices used for the correlation distribution. If
one would like to remove this second assumption and
construct device-independent key distribution protocols,
the Alice-Bob correlation must violate a Bell inequality.
If this is not the case, the data are insecure already against a
classical eavesdropper. We presented a QKD protocol
aimed at producing data that violate the CHSH inequality.
We proved its security against the most general individual
attack without signaling, independently of any assumption
about Hilbert spaces. To our knowledge, our results repre-
sent the first step towards the characterization of optimal
nonsignaling eavesdropping attacks. Compared to the re-
sults in [9], our analysis covers the noisy situation, but it
restricts Eve to an individual attack. Moreover, our proto-
col is simpler and can easily be implemented using today’s

technology, contrary to the protocol in [9], which uses
many arbitrarily close quantum states. We would like to
conclude with a comment on the role played by Bell
inequalities. It is often said that they are just examples of
entanglement witnesses. However, as shown here, they are
more than this, since they witness useful correlations in-
dependent of the Hilbert-space structure.
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FIG. 2. Key rates using one-way communication against non-
signaling individual attacks. The dashed line corresponds to the
situation where no preprocessing is employed, while the thick
one to the optimal preprocessing. In the inset, the key rate
against a standard quantum eavesdropper is given, compared
to the BB84 protocol (dashed line).

PRL 97, 120405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
22 SEPTEMBER 2006

120405-4


