Comment on "Structural Stability of Complex Hydrides: LiBH₄ Revisited"

In [1] a high-temperature LiBH₄ phase was studied in the harmonic approximation [2] and a new monoclinic *Cc* structure was proposed, while the experimentally observed [3,4] hexagonal $P6_{3}mc$ structure was rejected based on observation of imaginary (i.e., absolutely unstable) modes in its harmonic phonon spectrum [1,5]. However, experimentalists [3,4,6] proposed a hexagonal structure in which BH₄ units can rotate (see Fig. 5 in [3]), with the measured rotational barriers of 5 ± 5 kJ/mol [6]: this is no longer $P6_{3}mc$ after rotation of BH₄ units.

To check which structure is correct, we used the Vienna ab initio simulation package [7] with the projected augmented plane-waves [8] with 400 eV kinetic energy cutoff within the generalized gradient approximation [9] (VASP-PAW-GGA, same as in [1]) to calculate the rotational barriers in hexagonal LiBH₄ with a 12-atom unit cell. The result is in Fig. 1. It shows that indeed the $P6_3mc$ structure is unstable, and indeed BH₄ units rotate above the solid-solid phase transition at $T_c = 384$ K, because BH₄ rotational barriers are smaller than $k_B T \ge k_B T_c =$ 33 meV. Our calculations confirm results of the experiment [6], but show that harmonic approximation is invalid for both P63mc and high-T hexagonal LiBH4 structure with rotational modes. Hence, the high-temperature LiBH₄ phase cannot be studied within harmonic approximation and the "systematic approach" used in [1] fails.

So far we have shown that harmonic approximation results do not exclude the hexagonal LiBH₄ structure with rotational modes. But could the monoclinic Cc structure proposed in [1] be real? Comparing calculated (Fig. 3 in [1]) and experimental (Fig. 2 in [3]) x-ray diffraction (XRD) patterns, it is not difficult to see the difference. In particular, the monoclinic structure (Fig. 3 in [1]) produces 4 asymmetric peaks around $2\Theta = 16^{\circ}$ [Fig. 1 in [3] shows similar 4 peaks for LiBH₄ at room T (orthorhombic phase); the shift in 2 Θ is due to difference in λ], where the more symmetric hexagonal structure has 3 equidistant peaks (Fig. 2 in [3])—observed in experiment at 408 K. Thus, contrary to the claim in [1], the calculated XRD pattern of the Cc phase does not agree with experiment at T > 384 K even using lattice expansion as an excuse, while that of the hexagonal phase obviously does [3].

In conclusion, we explained why the harmonic approach used in [1] failed to address the high-temperature $LiBH_4$ phase. We showed that indeed the $P6_3mc$ structure is

FIG. 1 (color online). Calculated energy of hexagonal LiBH₄ with one BH₄ unit rotated around [0001] versus angle relative to $P6_3mc$, using n_k^3 points in Monkhorst-Pack mesh [12].

unstable, while the hexagonal LiBH₄ phase has very low rotational barriers (in agreement with experiment), thus it cannot be addressed within harmonic approximation. Our results will help to better understand the high-temperature phase of LiBH₄—an important material for reversible hydrogen storage [10,11].

We acknowledge partial support by DOE via Sandia Metal-Hydride Center of Excellence (No. DEFC36-05GO15064) and by NSF through NCSA (No. DMR06-0017N). We thank Dennis Graham for discussion.

Nikolai A. Zarkevich^{*} and D. D. Johnson Department of Materials Science & Engineering University of Illinois at Urbana-Champaign Urbana, Illinois 61801, USA

Received 5 May 2006; published 14 September 2006 DOI: 10.1103/PhysRevLett.97.119601

PACS numbers: 61.50.-f, 63.20.Dj, 64.70.Kb, 71.15.Mb

*Electronic address: zarkevic@uiuc.edu

- [1] Z. Lodziana and T. Vegge, Phys. Rev. Lett. **93**, 145501 (2004).
- [2] K. Parlinski, computer code PHONON, Kraków, Poland, 2004.
- [3] J-Ph. Soulié et al., J. Alloys Compd. 346, 200 (2002).
- [4] S. Gomes et al., J. Alloys Compd. 346, 206 (2002).
- [5] K. Miwa et al., Phys. Rev. B 69, 245120 (2004).
- [6] H. Hagemann et al., J. Alloys Compd. 363, 129 (2004).
- [7] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996); Comput. Mater. Sci. 6, 15 (1996).
- [8] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).
- [9] J. P. Perdew et al., Phys. Rev. B 46, 6671 (1992).
- [10] A. Züttel et al., J. Power Sources 118, 1 (2003).
- [11] J.J. Vajo et al., J. Phys. Chem. B 109, 3719 (2005).
- [12] H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).