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Many complex systems display self-organized critical states characterized by 1=f frequency scaling of
power spectra. Global variables such as the electroencephalogram, scale as 1=f, which could be the sign
of self-organized critical states in neuronal activity. By analyzing simultaneous recordings of global and
neuronal activities, we confirm the 1=f scaling of global variables for selected frequency bands, but show
that neuronal activity is not consistent with critical states. We propose a model of 1=f scaling which does
not rely on critical states, and which is testable experimentally.
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Self-organized critical states are found for many com-
plex systems in nature, from earthquakes to avalanches
[1,2]. Such systems are characterized by scale invariance,
which is usually identified as a power-law distribution of
variables such as event duration or the waiting time be-
tween events. 1=f noise is usually considered as a footprint
of such systems [1]. 1=f frequency scaling is interesting,
because it betrays long-lasting correlations in the system,
similar to the behavior near critical points.

Several lines of evidence point to the existence of such
critical states in brain activity. Global variables, such as the
electroencephalogram (EEG) and magnetoencephalogram,
display frequency scaling close to 1=f [3,4]. EEG analysis
[5] and avalanche analysis of local field potentials (LFPs)
recorded in vitro [6] provided clear evidence for self-
organized critical states with power-law distributions.
There is also evidence for critical states from the power-
law scaling of interspike interval (ISI) distributions com-
puted from retinal, visual thalamus and primary visual
cortex neurons [7]. In addition, model networks of neurons
indicate that critical states may be associated with fre-
quency scaling consistent with experiments [8]. However,
these are independent evidences from different prepara-
tions and the link between 1=f frequency scaling of global
variables and the existence of critical states in neural
activity has not been firmly established. Moreover, 1=f
spectra are not necessarily associated with critical states
[9], so it is not clear if the intact and functioning brain
operates in a way similar to critical states.

To attempt answering these questions, we first investi-
gated if 1=f frequency scaling is present in global variables
recorded close to the underlying neuronal current sources
in vivo. We analyzed cortical LFPs which were recorded
within cerebral cortex using bipolar extracellular high-
impedance microelectrodes [10]. Bipolar LFP recordings
sample relatively localized populations of neurons, as these
signals can be very different for electrodes separated by
1 mm apart [10]. This stands in contrast with the EEG,
which samples much larger populations of neurons [11]
and is recorded from the surface of the scalp using

millimeter-scale electrodes. LFPs are subject to much
less filtering compared to EEG, because EEG signals
must diffuse through various media, such as cerebrospinal
fluid, dura matter, cranium, muscle, and skin. Thus, finding
1=f frequency scaling of bipolar LFPs would be a much
stronger evidence that this scaling reflects neuronal activ-
ities, as these signals are directly recorded from within the
neuronal tissue. Moreover, in order to distinguish state-
dependent scaling properties, we have compared record-
ings during wakefulness and slow-wave sleep in the same
experiments.

Bipolar LFPs from cat parietal association cortex show
the classic landmarks of EEG signals in these states [12];
namely, during waking, LFPs are of low amplitude and
very irregular (Fig. 1, top trace), and are dominated by beta
frequencies (around 20 Hz). This pattern is also called
‘‘desynchronized’’ activity, and is typically seen during
aroused states in the human EEG [11]. During slow-wave
sleep, LFPs display high-amplitude slow-wave activity
(Fig. 1, middle trace), similar to the ‘‘delta waves’’ of
human sleep EEG [11]. The power spectral density
(PSD) calculated from these LFPs typically shows a broad-
band structure. During wakefulness, the PSD shows two
different scaling regions, according to the frequency band.
For low frequencies (between 1 and 20 Hz), the PSD scales
approximately as 1=f, whereas for higher frequencies
(between 20 and 65 Hz), the scaling is approximately of
1=f3 (Fig. 1, black PSD). During slow-wave sleep, the
additional power at slow frequencies masks the 1=f scal-
ing, but the same 1=f3 scaling is present in the high-
frequency band (Fig. 1, gray PSD). The same behavior
was observed for other electrodes in the same experiment,
and in three other animals (not shown). Thus, these results
confirm that the 1=f frequency scaling reported in the EEG
[3] is also present in bipolar LFPs from cat association
cortex, but only during waking and for specific frequency
bands.

To investigate whether this 1=f scaling is associated
with self-organized critical states, we first analyzed the
ISI distributions from neurons recorded in cat parietal
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cortex. Unit activity was recorded simultaneously with
LFPs at 8 locations separated by 1 mm [10]. The distribu-
tion of ISIs was computed for individual neurons, and was
represented in log-linear scale (Fig. 2; log-log scale in
insets). For both wakefulness and slow-wave sleep
[Fig. 2(a) and 2(b)], the distributions showed no evidence
for power-law behavior. During waking, the ISI distribu-
tions were close to exponentially distributed ISIs, as gen-
erated by Poisson stochastic process with same statistics as
the neurons analyzed (Fig. 2, Poisson). For 22 neurons
recorded during the wake state, the Pearson coefficient
was of 0:91� 0:13 for exponential distribution fits, and
of 0:86� 0:16 for power-law distribution fits. Taking only
the subset of 7 neurons with more than 2000 spikes, the fit
was nearly perfect for exponential distributions (Pearson
coefficient of 0:999� 0:001). However, during slow-wave
sleep, there was a marked difference between the experi-
mental ISI and the corresponding Poisson process

[Fig. 2(b)]. In this state, neurons tended to produce long
periods of silences, which are related to EEG slow waves
[10,12], and which is visible as a prominent tail of the
distribution for large ISIs. This tail was well fit by a
Poisson process of low rate [Fig. 2(b), dashed line].
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FIG. 2. Absence of power-law distributions in neuronal activ-
ity. The logarithm of the distribution of ISI during waking
(Wake, (a), 1951 spikes) and slow-wave sleep (SWS, (b),
15997 spikes) is plotted as a function of ISI length, or log ISI
length (insets). A Poisson process of the same rate and statistics
is displayed in (a) (Poisson; gray curve displaced upwards for
clarity). The exponential ISI distribution predicted by Poisson
processes of equivalent rates is shown as straight lines (smooth
curve in inset). The dotted line in (b) indicates a Poisson process
with lower rate which fits the tail of the ISI distribution in SWS.
(c) Avalanche analysis realized by taking into account the
statistics from all simultaneously recorded cells in Wake. The
distribution of avalanche sizes scales exponentially (black
curves), similar to the same analysis performed on a Poisson
process with same statistics (gray curves).

Wake

5 sec

0.5 mV

SWS

-1 1 3 5

-2

2

6

α=1

log f

lo
g 

P *

10

α=3

FIG. 1. Frequency scaling of local field potentials from cat
parietal cortex. Top traces: LFPs recorded in cat parietal cortex
during wake and slow-wave sleep (SWS) states. Bottom: Power
spectral density of LFPs, calculated from 55 sec sampled at
300 Hz (150 Hz 4th-order low-pass filter), and represented in
log-log scale (dashed lines represent 1=f� scaling). During
waking (black), the frequency band below 20 Hz scales approxi-
mately as 1=f (* shows the peak at 20 Hz beta frequency),
whereas the frequency band between 20 and 65 Hz scales
approximately as 1=f3. During slow-wave sleep (gray; displaced
upwards), the power in the slow frequency band is increased, and
the 1=f scaling is no longer visible, but the 1=f3 scaling at high
frequencies remains unaffected. PSDs were calculated over
successive epochs of 32 sec, which were averaged over a total
period of 200 sec for Wake and 500 sec for SWS.
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To further check for criticality, we have performed an
avalanche analysis by taking into account the collective
information from the multisite recordings. We used the
same method as for Ref. [6], which amounts to detecting
clusters of contiguous events separated by silences, by
binning the system in time windows of 1 to 16 ms [6].
As there was no evidence for any recognizable event in
LFPs which could be taken as avalanche (see Fig. 1), we
used the spike times among the ensemble of simulta-
neously recorded neurons. The distribution of avalanche
size does not follow power-law scaling [Fig. 2(c), black],
but is closer to an exponential distribution as predicted by
Poisson processes [Fig. 2(c), gray]. This analysis therefore
confirms the absence of avalanche dynamics in this system
[13].

To explain the 1=f scaling of LFPs, we attempted to
reconstruct LFPs from unit activity. Unit activity is dis-
played in Fig. 3 (top) for the same experiment as that of
Fig. 1. Because LFPs are generated primarily by synaptic
currents in neurons [11,14], and because synaptic currents
are very well modeled by simple exponential relaxation
processes [15], we modeled the synaptic current from the
following convolution [16]:

 C�t� �
Z 1
�1

D�t0� exp���t� t0�=�s�dt
0; (1)

where C�t� is the synaptic current and D�t� is the ‘‘drive’’
signal which consisted in the experimentally-recorded
spike trains. The PSD of the synaptic current is then given
by

 S�!� � jC�!�j2 �
jD�!�j2

1�!2�2
s
: (2)

The PSD of synaptic currents reconstructed from experi-
mentally recorded spikes showed an approximate Lorent-
zian behavior (1=f2 scaling) during wakefulness (Fig. 3,
Wake), as expected from the exponential nature of synaptic
events. During slow-wave sleep, there was more power for
slow frequencies, but the 1=f2 scaling at high frequencies
was still present (Fig. 3, SWS). The Lorentzian form of the
PSD in Fig. 3 (Wake) shows that in the waking state,
jD�!�j2 is approximately constant, therefore the drive
D�t� is statistically equivalent to a white noise process,
consistent with the apparent Poisson statistics of spikes
identified in Fig. 2 (see also Refs. [17] for similar findings
in awake monkeys). During slow-wave sleep, however, the
deviation from the Lorentzian suggests that D�t� is a
stochastic process statistically different from white noise,
and contains in addition increased power at low frequen-
cies, also consistent with the analysis of Fig. 2.

This model, however, does not yield PSD consistent
with the 1=f and 1=f3 scaling of LFPs shown in Fig. 1.
Interestingly, the scaling of this model is in 1=f0 or 1=f2

for the same frequency bands that displayed 1=f or 1=f3 in
LFPs, respectively. Using a similar convolution equation to
model the PSD of LFPs

 LFP �t� �
Z 1
�1

C�t0�F�t� t0�dt0; (3)

where C�t� is the synaptic current source and F�t� is a
function representing a filter. As above, the PSD is given by

 P�!� � jLFP�!�j2 � jC�!�j2jF�!�j2: (4)

In this model, the frequency scaling of the PSD of both
wakefulness and slow-wave sleep LFPs in Fig. 1 can be
explained by assuming that the filter scales as 1=f, or
equivalently that jF�!�j2 	 1=!. In other words, this
model can explain qualitatively the 1=f and 1=f3 scaling
of LFPs under the condition that neuronal current sources
are subject to an 1=f filter. Such a filter is most likely due
to the filtering of extracellular currents through the tissue,
before it reaches the electrode [18].

Finally, we provide an intuitive justification for this
predicted 1=f filter, as well as possible ways to test it
experimentally. The 1=f filtering of extracellular media
can be justified intuitively by considering the complex
structure of such media, and, in particular, its spatial
irregularity. Extracellular space consists of a complex ar-
rangement of cellular processes of various size and irregu-
lar shape, while the extracellular fluid represents only a few
percent of the available space [19]. The effect of a current
source in such media will be a combination of resistive

FIG. 3. Frequency scaling of synaptic currents reconstructed
from spike times. Top traces: raster plot of spiking times of 8
multiunit recordings in cat cortex during wakefulness (same
experiment as in Fig. 1; data from Ref. [10]). Middle
trace: total synaptic current obtained by convolving the spike
times with exponential relaxation processes (�s � 10 ms).
Bottom: PSD of synaptic currents for wake (black) and slow-
wave sleep (SWS; PSD in gray displaced upwards for clarity);
dashed lines represent 1=f� scaling.
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effects, due to the flow of current in the conductive fluids,
and capacitive effects, due to the high density of mem-
branes (for a theoretical treatment see Refs. [18]). Such a
complex arrangement of resistors and capacitors with ran-
dom values is known to produce an 1=f filter, as found for
inhomogeneous materials [20]. Although such materials
are different from the structure of biological media, it is
plausible that similar considerations may explain the 1=f
filtering predicted here. Linear arrangements ofRC circuits
with random values (RC line) also generate 1=f noise [21].
Superposition of a large number of exponential relaxation
processes with different relaxation rates can also generate
1=f scaling [22,23]. Understanding of the 1=f filtering by
extracellular media based on plausible biophysical models
is presently under investigation. The predicted 1=f filter
could also be tested experimentally by injecting white
noise currents (of amplitude comparable to neuronal cur-
rent sources) in extracellular space, and measuring the
resulting field potential at some distance from the injection
site. This measured LFP should scale as 1=f.

In conclusion, we have shown that the PSD of bipolar
LFPs from cat parietal cortex displays several scaling
regions, as 1=f or 1=f3 depending on the frequency band
and behavioral state. By analyzing neuronal unit activity
from the same experiments, we did not see evidence that
this 1=f scaling is associated with critical states. Neither
ISI distributions nor avalanche size distributions display
power-law scaling, but are rather consistent with Poisson
processes. We have provided an alternative explanation for
1=f frequency scaling which does not rely on critical
states, but rather stems from the filtering properties of
extracellular media. We have given an intuitive explanation
for a possible physical origin of such 1=f filtering, as well
as a way to test it experimentally. These results may appear
to contradict previous evidence for critical states in vitro
[6] or in the early visual system in vivo [7]. However, the
absence of critical states reported here may instead reflect
fundamental differences between association cortex and
other structures more directly related to sensory inputs.
Future work should clarify why different structures show
different scaling, and what implications it may have for
brain dynamics and coding.
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