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The damping due to rare-earth-metal impurities in transition metals is discussed in the low concen-
tration limit. It is shown that all established damping mechanisms based on spin-orbit and/or spin-spin
interactions cannot explain experimental observations even qualitatively. We introduce a different
relaxation channel due to the coupling of the orbital moments of the rare-earth-metal impurities and
the conduction p electrons that leads to good agreement with experiment. Using an itinerant picture for
the host ions, i.e., write their magnetization in terms of the electronic degrees of freedom, is key to the
success of our model.
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Magnetization dynamics has become one of the most
important issues of modern magnetism. This development
is driven by the technological demand to tailor magnetic
responses on ever smaller length and shorter time scales.
The importance of this issue manifests itself in a com-
pletely new area of research, spintronics, and a huge lit-
erature that cannot be cited here. Selected highlights
include precessional switching by tailored field pulses
[1,2], spin-torque [3,4], and laser-induced magnetization
dynamics [5,6].

In general, magnetization dynamics is described via the
Landau-Lifshitz-Gilbert equation (LLG) [7] including ad-
ditional terms to incorporate spin-torque effects [8] or
those due to pulsed optical excitations [9]. All these de-
scriptions account for energy dissipation via a phenome-
nological damping parameter � which governs the time
needed for a nonequilibrium magnetic state to return to
equilibrium. Recently it has even been suggested that �
determines the magnetic response to ultrafast thermal ag-
itations [10].

Technological applications call for the ability to tailor �
[11]. The most systematic experimental investigation on
this topic was published by Bailey et al. [12] who studied
the effect of rare-earth-metal doping on the damping in
permalloy. Most rare-earth-metal ions induced a large in-
crease of �, but neither Eu nor Gd altered the damping of
permalloy (cf. Fig. 2). Since Gd3� and Eu2� have no
orbital momentum, this points immediately to the impor-
tance of the angular momentum in the damping process.
Bailey et al. determined damping by reproducing their data
via the LLG equation using � as a fit parameter. This
widely used procedure points to a fundamental problem
of this phenomenological approach. Though the LLG
equation describes data well, a more microscopic approach
is needed to understand the origin of damping.

It was Elliott [13] who first studied damping in semi-
conductors due to spin-orbit coupling. Later Kambersky
[14] argued that the Elliot-Yafet mechanism should be also
operable in magnetic conductors. Korenman and Prange
[15] developed a more microscopic treatment and found

that spin-orbit coupling should be important at low tem-
perature in transition metals. Recent measurements of
damping in magnetic multilayers at room temperature
[16] suggest that the s-d interaction might also be at the
origin of damping [17,18]. However, all of the present
models fail to reproduce the data of Ref. [12].

In this Letter, we explain the increase of damping in
rare-earth-metal-doped transition metals via a novel orbit-
orbit coupling between the conduction electrons and the
impurities. The well-known s-f interaction [19] gives rise
to a �gJ � 1�2 dependence of the damping that is in contra-
diction to experimental observations [12]. In contrast, the
orbit-orbit coupling considered here reproduces the mea-
sured �gJ � 2�4 dependence of the damping. Both depen-
dencies on the Lande g factor gJ follow directly from the
fact that the rare-earth-metal ions are in their ground state.
Hence, their angular momentum Lf, spin Sf, and total
angular momentum Jf are related by the Wigner Eckard
theorem: Lf � �2� gJ�Jf and Sf � �gJ � 1�Jf. Deriving
the magnetic moments of the transition-metal ions from the
electronic degrees of freedom is essential to capture the
correct behavior of damping as a function of Jf. For the
uniform mode, the damping due to orbit-orbit coupling is
of Gilbert form in the low frequency limit.

Taking the wave functions of the d-, f-, and conduction
electrons orthogonal, the Hamiltonian for the rare-earth-
metal-doped transition metal in an external field H is

 H �H e �H f �H d: (1)

This approximation should be valid for the heavy rare-
earth metals but probably fails for elements like cerium
where valence fluctuations are important. The conduction
electron Hamiltonian H e is the usual one, H e �P
k;��k;�ak;�

yak;�, where ayk;� and ak;� are the creation
and annihilation operators of a conduction electron with
momentum k and spin �. �k;� is the energy of the con-
duction electrons including a Zeeman term.
H f is the Kondo Hamiltonian [20] of the localized rare-

earth-metal moment
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 H f � �Se � Sf � �Le �Lf ��f �H: (2)

Se=f and Le=f are the spin and angular momentum of
conduction and f electrons, respectively. Le=f are taken
with respect to the position of the impurity. The spin-spin
term is the well-known s-f coupling used by de Gennes to
reproduce the Curie temperatures in rare-earth metals with
� being of the order 0.1 eV [19]. The last term is again a
Zeeman term. The middle term is the essential orbit-orbit
interaction needed in our discussion. To get a nonzero
orbit-orbit term due to a single impurity at the center, it
is essential to include higher terms of the partial wave
expansion for the wave functions of the conduction elec-
trons:  k�r� � 4����

V
p

P
1
l�0

Pm�l
m��l i

lf�r�jl�kr�Ylm��k;�k� �

Y�lm��;��. The first nontrivial contribution for l � 1 is [20]

 H LL � i�2� gJ�
X
k;k0
��k;k0�k̂� k̂0 � Jfa

y
k ak0 ; (3)

where the orbit-orbit coupling � will be assumed to be a
function of the relative angles of the k vectors and is
almost everywhere zero except for k close to the Fermi
level kF. The magnitude of � is not known but is expected
to be of the same order as the spin-spin coupling constant �
[21,22]. The crystalline electric field effect in transition
metals is less than 0.1 meV which is small and hence the
spin-orbit term Se �Lf is neglected. At room temperature
all the rare-earth-metal ions studied in Ref. [12] are in their
ground state making the term Sf �Lf ineffective as damp-
ing mechanism. This follows immediately from the
Wigner-Eckart theorem.

The Hamiltonian for the host transition-metal ions is
based on the Anderson Hamiltonian with explicit spin
rotational invariance in the absence of a Zeeman term
[15,23,24]. It is

 H d � �dd
y
�d� �

X
k

Vkd�a
y
k;�d� � d

y
�ak;�� �

U
8
	2

�
U
2

Sd � Sd ��d �H; (4)

where Sd is the spin operator of the local d electrons while
their orbital angular momentum is assumed quenched. 	 is
the charge density operator of the d electrons. In transition-
metal ions such as Ni, Vkd 	 1:0–10:0 eV is comparable to
the Coulomb potential U. The hybridization term between
the conduction and d electrons is essential to establish a
spin-independent orbit-orbit coupling between the d and
the f ions. The degree of localization of the magnetic
moments increases with decreasing Vkd [25] and controls
the extent to which rare-earth-metal impurities enhance
damping.

The orbit-orbit coupling [cf. Eq. (3)] gives no contribu-
tion for Gd3��4f7� as observed in the experiment [12]. As
for the element Eu, it is believed from measurements of the
paramagnetic susceptibilities that the ionic state is
Eu2��4f7� and not Eu3��4f6� [19,26]. If this is the case

then clearly this is a state with Lf � 0 and it is the same as
that of Gd3�. Yb is also present in a double-ionized state
[27] and therefore doping with Yb2��4f14� should not
increase damping. This result remains to be confirmed by
experiment. For Eu there is an additional reason why its
angular momentum is quenched. The first excited state of
this latter element lies only about 400 K above the ground
state [27] and this can lift the degeneracy of the ground
state. The average orbital angular momentum will there-
fore be zero even though L2 remains a good quantum
number [28]. Hence our Hamiltonian from the outset re-
produces the experimental results for Eu and Gd and
predicts that doping with Yb should not change the damp-
ing. We next address the remaining rare-earth elements.

First, we outline the steps to derive the damping due to
the orbit-orbit coupling term. We are only interested in the
damping of the d moments of the transition metal; there-
fore, it is advantageous to adopt a functional integral
approach. Since our system is near equilibrium and far
from the Curie point, we use the spin wave approximation
and expand the spin operators of the f moments in terms of
Boson operators f
, where f
 � Syf 
 iS

x
f. We keep only

the first nontrivial terms. The integration of the conduction
electrons is carried out exactly. Afterward we integrate the
impurity variables, f and fy, also exactly but keep only
quartic terms in d and d�. The remaining effective action
has now only the fields d and dy and from their equations
of motion the spin propagator hm��
�m��
0�i of the d
moments, m
 � Sxd 
 iS

y
d, can be determined. We use a

Stratonovich-Hubbard transformation to write this effec-
tive Lagrangian in terms of m
. Then a stationary phase
approximation of the functional generator allows us to
determine the desired propagator and hence the damping.
We finally compare the functional form of this result to that
of LLG and discuss why the electronic (itinerant) picture of
the host transition-metal ions is essential.

The fundamental quantity in our calculation is the gen-
erating functional

 Z ���; �� � Tr e�
R
�

0
d
fH����
�m��
����
�m��
�g; (5)

where � and �� are external sources and � is inverse
temperature. The propagator, i.e., the connected two--
point Green’s function, of the volume mode of the
transition-metal ions is found by functional differentia-
tions with respect to the external sources �� and �,
hm��
�m��
0�ic � 
2 lnZ���; ��=
��
�
���
0�. It is cal-
culated within a double random phase approximation
(RPA2) method. The true single particle propagator of
the d bands is first found within a RPA in the presence of
an effective field due to the conduction electrons and the
impurities. In turn, the effect of the f impurities on the
conduction electrons is calculated within RPA. The result-
ing effective Lagrangian is now written in terms of m only

 L � �1
2mijKijklmkl � Tr ln�G�1

d �Km�; (6)

where G�1
d ��1;�2��@
� ��d�V2Gc�TrkfGfGcBGcAg
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is the propagator of the d electrons in the presence of the conduction electrons and the rare-earth-metal impurity (�i � 1, 2
for spin-up and spin-down, respectively). The quadratic term in m represents effective anisotropy and spin-charge
interactions and is given by

 K �1�2�3�4
�
�U

4
�
�1�2


�3�4
� 2
1�1


2�2

1�3


2�4
� � 22V4Gf�GcBGcAGc��1�2

Gf�GcBGcAGc��3�4

�1�4


�2�3

� V4GcAGcGfGcBGc: (7)

Integrations over momentum and spin are implied in all these expressions. The different terms that appear in K are as
follows: Gc is the Green’s function of the conduction electrons in the mean field approximation

 G�1
c �k; �1;k0; �2; 
� � �@
 � �"k�1

��F�
kk0
�1�2
� i��k; k0��2� gJ�hJ

z
fi�k

0
xky � k0ykx�
�1�2

; (8)

which is off diagonal in momentum due to the orbit-orbit coupling. �"k;� now includes Zeeman terms due to the external
field and the z component of the field due to impurity. The propagator Gf is that of the f ions in the presence of both the
conduction electrons and the transition-metal ions, G�1

f �
� � @
 ��fH � Trk;�fGcAGcBg. The A and B matrices are
solely due to the presence of the impurity and represent the indirect coupling between the transition-metal ions and the f
ions

 A�k0; �1; k; �2� � B�k; �1; k0; �2�
� � �0�

�
�1�2
� i�0��k0k; (9)

where we have set �0 �
�
������
2Jf
p

4 �gJ � 1�, �0 �
�
������
2Jf
p

2 �2� gJ�, and �
kk0 � �k̂
0 � k̂�
. In the trace log term of the effective

Lagrangian, the first nontrivial contribution is of order V4 and is given by Fig. 1. The diagram with a single insertion of an f
propagator does not contribute due to the antisymmetry of the orbit-orbit coupling in the momentum space. Varying the
effective action with respect to mij gives four equations which can be averaged and differentiated with respect to the
external sources to get the m propagators. We are only interested in C�1221� � hm12m21i which is given by

 fG�1
d11 �K11ijhmijigC�1221� �K11ijC�ij21�hm12i � �hm22i �K21ijC�ij21�hm22i �K21ijhmijiC�1221�: (10)

In the absence of impurities, these equations are to lowest order the time-dependent generalization of the Hartree-Fock
equations derived by Anderson [23]. Using the RPA2 method, we solve for C�1221�

 C 1221�!l� �
X
n

m11�!n�m22�!n �!l�

��
1�

X
n;m

K2112�!m�m11�!n �!m�m22�!n �!m �!l�

�
; (11)

where !l � �2l� 1��=� for integer l. If we ignore the
impurity interaction and replace the average values of the
mij by the Anderson solution, we recover the RPA result
for the propagator of the magnetization. To include the
impurities, we evaluate the d propagators,mij, within RPA.
In the low frequency limit, !
 �
 !c, we find that the
(retarded) propagator CR of the theory is proportional to
�!�!0 � i�!�

�1. Here, ��1 is the lifetime of the virtual
d states [23], !c denotes the frequency of the conduction
electrons, and!0 is the ferromagnetic resonance frequency
of the transition metal. This low frequency limit for the
damping is similar to that of the LLG result [15]. The
damping � in the spin-conserving channel is proportional
to Jf�Jf � 1���gJ � 2�jVj�4 and is given by

 � � cj�Vj4Jf�Jf � 1��2� gJ�4

�

�
U�E

25�3�E��E�2�E��E�2
�nmkF�

2

18!4
c
�Q�!f�

�
:

(12)

Here n is the density of conduction electrons, c is the
concentration of the f impurities, and E
 �E is the
energy of the up-down d states. These latter energies can
be determined self-consistently as in the Anderson solution
[23] and hence their form is not expected to depend

strongly on the atomic number of the rare-earth-metal
impurity at low concentrations. The explicit form of the
function Q is not needed here but it represents contribu-
tions beyond the ‘‘mean’’ field approximation of the f
impurities and is given by Fig. 1. In Fig. 2, we show that
the leading coefficient of the damping due to non-spin-flip
scattering (solid curve) is in very good agreement with the
experimental results of Bailey et al. [12].

Finally we point out the reasons behind insisting on
using the itinerant electrons explicitly instead of the sim-
pler s-d exchange interaction which accounts well for
damping in permalloy [16]. Using a localized-type
Hamiltonian for the d moments

dd

d d

V V

V V

f f

c

c

FIG. 1. The first diagram that is contributing to the damping of
the d electrons due to the f impurities through the conduction
electrons.
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 H d � �JSe � Sd ��d � Sd (13)

instead of Eq. (4), leads to a damping which differs sig-
nificantly from experiment (dashed curve in Fig. 2). This
localized moment Hamiltonian, however, appears to de-
scribe well damping in insulators such as heavy rare-earth-
metal-doped garnets [29]. In garnets, the hybridization
coupling is smaller than in metals. Hence our result also
explains why the damping in rare-earth-metal-doped gar-
nets is not as strong as in the rare-earth-metal-doped tran-
sition metals. The experimental measurements (triangles)
clearly show that at room temperature non-spin-flip scat-
tering is more important than spin-flip scattering which
only becomes important close to the critical temperature.
Again, the data are well reproduced by the orbit-orbit
coupling and the relatively large increase in damping is
due to the large virtual mixing parameter Vkd. In contrast,
the s-f coupling (squares in Fig. 2) is in conflict with
experiment.

In summary, we have shown that the damping in rare-
earth-metal-doped transition metals is mainly due to an
orbit-orbit coupling between the conduction electrons and
the impurity ions. For near equilibrium conditions and in
the low frequency regime this leads to damping for the
uniform mode that is of Gilbert form. The orbit-orbit
mechanism introduced here is much stronger than the
spin-orbit based Elliott-Yafet-Kambersky mechanism
since the charge-spin coupling at the host ion is of the
order of 1–10 eV compared to 0.01 eV for spin-orbit
coupling. The predicted increase of damping is propor-
tional to V4 which in transition-metal ions is of the same
order as U the Coulomb potential. A localized model for
the d moments based on the s-d exchange is unable to
account for the increase in damping in these doped systems
as a function of the orbital moment of the rare-earth-metal
impurities. An additional test of this damping theory would
be to measure the effect of a single rare-earth element on
the damping in various transition metals. Such experiments
will provide further insight into the dependence of damp-

ing on V and will improve our understanding of the itin-
erant versus localized pictures of magnetism.
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W. Bailey, O. Heinonen, P. Jones, O. Myarosov, and
Y. Tserkovnyak.
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FIG. 2. Comparison of the normalized leading factor in the
damping as a function of the rare-earth-metal impurity in
Eq. (12) (solid line) and Eq. (13) (dashed line) to the data of
Ref. [12]. The squares represent damping due to s-f coupling
only, Eq. (2), without the orbit-orbit coupling.
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