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From a consideration of high temperature series expansions in ferromagnets and in spin glasses, we
propose an extended scaling scheme involving a set of scaling formulas which expresses to leading order
the temperature (T) and the system size (L) dependences of thermodynamic observables over a much
wider range of T than the corresponding one in the conventional scaling scheme. The extended scaling,
illustrated by data on the canonical 2d ferromagnet and on the 3d bimodal Ising spin glass, leads to
consistency in the estimates of critical parameters obtained from scaling analyses for different
observables.
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Critical divergences of thermodynamical quantities
F�T� at continuous phase transitions are conventionally
quoted in terms of the normalized scaling variable t �
�T � Tc�=Tc, i.e., in the form

 F�T� ’ AF��T � Tc�=Tc�
��; (1)

where Tc, �, and AF are the transition temperature, the
critical exponent, and the critical amplitude, respectively.
There exist associated finite size scaling (FSS) rules. It has
been clearly underlined (see, e.g., [1]) that this representa-
tion is valid only in the immediate vicinity of Tc, which is a
very restrictive condition for both numerical simulations
and experiments. In particular, for the analysis of finite size
numerical data on complex systems such as Ising spin
glasses (ISGs), where simulations have many intrinsic
limitations, it is difficult to analyze data while strictly
complying with this condition.

Other scaling variables can be used. In all modern the-
oretical and numerical analyses on ferromagnets, e.g.,
Refs. [2,3], as well as in some experimental analyses,
e.g., Refs. [4,5], the scaling variable � � 1� �=�c �
�T � Tc�=T is used instead of t. Although no general
rationalization seems to have been published yet explain-
ing why one scaling variable should be chosen rather than
another, in this Letter we propose a coherent scaling
scheme for critically divergent quantities derived from a
systematic consideration of high temperature series expan-
sions (HTSE) which naturally leads us to use the variable
�. In addition to this, the HTSE analysis leads us to
properly define singular terms of interest in such a way
that they themselves reproduce appropriate temperature
dependence at the highest temperatures, i.e., in the limit
�! 0. We call this the extended scaling scheme, which
we demonstrate below to be quite powerful at temperatures
close to Tc where in practice one makes critical analyses
for divergent quantities.

For a ferromagnet and, in particular, an Ising ferromag-
net (IF), our extended scaling scheme is explicitly de-
scribed as follows. (i) We use � as the normalized scaling

variable and write

 ���� ’ A��
��; (2)

for the reduced susceptibility � following the standard
definition without a prefactor �, which is in fact consistent
with the idea of our extended scaling. (ii) Defining the
second moment correlation length � through �2 �P
rr

2hS0Sri � 2d��2, with d the spatial dimension [3],
we write � as

 ���� ’ �1=2A����: (3)

(iii) Using this form of ����, we rewrite the FSS ansatz,
F�L;�� � L�=� ~F�L=�����, as

 F�L;�� � �L=�1=2��=�F ��L=�1=2�1=��1� �=�c��: (4)

For the 2d-IF, where the confluent corrections to scaling
are known to be zero [2,6,7], we demonstrate that the above
critical expressions with the known exact values of the
critical parameters reproduce ���� and ���� to a good
approximation right up to high temperatures, and that our
FSS form Eq. (4) holds to a high approximation over a very
much wider range of L and T than the conventional one.
For the ISG, �2 replaces � throughout in (i), (ii), and (iii),
giving an entirely novel set of expressions. The use of our
FSS form appropriately modified for the ISG resolves a
long-standing puzzle in the ISG critical analysis, i.e., pub-
lished estimates for the critical exponent � through �
scaling and through � (or the Binder parameter) scaling
differ by a large factor [8,9]. We emphasize here that
Eqs. (2)–(4) above are leading order expressions of the
divergent quantities. This does not mean that we neglect
even the confluent corrections to scaling, but that fits of the
numerical data examined below to our extended scaling
scheme only with the leading expressions are quite satis-
factory. We will discuss separately [10] that analyses of
published high-precision data on canonical ferromagnets
using the present extended scaling scheme actually give
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estimates of the confluent correction terms which improve
considerably over those from standard analyses.

In standard spin 1=2 ferromagnets the HTSE for the
susceptibility ���� is written as

 ���� � 1	 a1�	 a2�
2 	 a3�

3 	 
 
 
 ; (5)

where � � J=kBT with the coupling constant J and kB set
to unity [3,11,12]. The asymptotic form of its factors an is
eventually dominated by the closest singularity to the
origin (Darboux’s first theorem [13]) which in the simplest
case is the physical singularity, i.e.,

 �1� �=�c�
�� � 1	 �

�
�
�c

�
	
���	 1�

2

�
�
�c

�
2
	 
 
 
 ;

(6)

with �c being the inverse critical temperature. One of the
techniques to relate these two expressions is the ratio
method, in which the recurrence relation an=an�1 �
�1=�c��1	 ��� 1�=n� for large n is used [14]. It is there-
fore natural to adopt � � 1� �=�c as the scaling variable
in critical analyses based on the HTSE theory.

The HTSE for the second moment �2��� introduced
above is of the form [3]

 �2��� � �b1���1	 �b2=b1��	 �b3=b1��2 	 
 
 
�: (7)

It diverges at Tc as �T � Tc����	2��. Then, invoking again
Darboux’s theorem to link the series within the brackets
�
 
 
� to the critical divergence, the appropriate extended
scaling form can be written as

 �2��� ’ �A��1� �=�c�
���	2��: (8)

By combining this with Eq. (2) for ����, Eq. (3) for ���� is
derived. With this expression for � the FSS form becomes
Eq. (4). At the limit �! 0, Eqs. (2), (3), and (8) have the
same� dependence as the leading terms of the correspond-
ing HTSE. This implies that they merge smoothly to the
analytic corrections to scaling to yield the proper expres-
sions at highest temperatures. Similar expressions are ex-
pected also for confluent corrections to scaling if they exist.

We exhibit in Figs. 1(a) and 1(b) log-log plots of the
susceptibility � of the canonical 2d-IF in the thermody-
namic limit, plotted against log�t� and log���, respectively.
The data points in the figure are the high-precision results
of the critical [2] and HTSE [12] analyses. The line in
Figs. 1(a) and 1(b) is the power-law expression of � as a
function of t and �, respectively, with � � 7=4 and the
critical amplitude A� � 0:962 581 . . . [2]. By the � scaling,
all the data points up to nearly � � 1, i.e., to almost T �
1, lie on the scaling expression of Eq. (2) within the
accuracy of the figure. This result reflects the weakness
of corrections to scaling in this system as mentioned above.
On the other hand, the deviation of the true � data from the
t scaling line, � � A�t

��, is significant already at, say, t ’
0:2 (or T ’ 1:2Tc). Thus if the scaling variable t rather than

� were used for a critical analysis on this system, there
would appear to be very strong ‘‘correction’’ terms, which
would pollute the evaluation of the � value.

Figure 2 shows the FSS plots for the 2d-IF susceptibility,
the standard one in the inset and the extended one in the
main panel. It is clear that the standard form, as expected,
gives acceptable scaling only extremely close to Tc, while
the extended form gives high quality scaling for all tem-
peratures above Tc examined. In Fig. 3 we show the
conventional and extended FSS plots of ��T; L� as a func-
tion of ��T; L�=L. Note that, since the value Tc is not
involved in this analysis at all (also in Fig. 6 below), one
can judge straightforwardly our proposal (iii) by this com-
parison. The consequence is that the extended FSS plot is
definitely better than the conventional one. We thus con-
clude that, at least for the 2d-IF, our extended scaling
scheme does indeed work much better than the conven-
tional one.

100

101

102

103

10−1 100

χ

t=(T−Tc)/Tc

(a)

Leading term
From Ref. [2]

From Ref. [12]

10−1 100

τ=(T−Tc)/T

(b)

Eq.(2)
From Ref. [2]

From Ref. [12]

FIG. 1 (color). Susceptibility � of the 2d-IF as a function of
log�t� (a) and log��� (b).
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FIG. 2 (color). An extended FSS plot for the 2d-IF suscepti-
bility �. The points are data obtained by our Monte Carlo
simulation at temperatures 0:46 � T=Tc � 1:86. The inset
presents a standard FSS plot for the same �. For both plots the
exact scaling parameters are used.
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Let us next discuss an extension of our extended scaling
scheme to the Edwards-Anderson 3d-ISG model having a
symmetric interaction distribution with zero mean.
Because of the symmetry, as stated by Daboul et al. [15],
only even powers of � enter into the HTSE for thermody-
namic quantities, and the HTSE for the reduced spin glass
(SG) susceptibility �SG (the ordinary one multiplied T2) is
of the form

 �SG��� � 1	 c1��
2� 	 c2��

2�2 	 c3��
2�3 	 
 
 
 : (9)

Hence once again invoking the Darboux theorem, but this
time with ��=�c�2 replacing �=�c, or �0 � 1� ��=�c�

2,
we adopt the following scaling form for �SG��� [15]:

 �SG��� ’ A�SG
�1� ��=�c�

2���: (10)

The �2 in spin glasses, again due to the symmetry, can be
expressed as even powers of � starting from the �2 term,
though the coefficients have not been explicitly evaluated
yet. Hence the scaling form for ���� in spin glasses can be
taken to be

 ���� ’ �A�SG
�1� ��=�c�2���: (11)

Then the extended FSS for ISGs can be written as

 F�L;�� � �L=���=�F f�L=��1=��1� ��=�c�
2�g: (12)

In contrast to the 2d-IF, analytical theories are very
limited for ISGs. Daboul et al. [15] were able to make
accurate estimates of �c and � of the models by the HTSE
method but only in dimension 4 and above. We therefore
compare our extended � scaling scheme with the conven-
tional one with a variable t, without introducing corrections
to scaling in either analysis. The numerical data used are
obtained on the 3d-ISG system with bimodal interactions
by the exchange Monte Carlo method.

In Fig. 4 we show an extended FSS plot for the correla-
tion length ��L; T�=L as a function of the scaling variable
x � j�0j�TL�1=� based on Eq. (12). In this plot we fix Tc �

1:11, which is the optimal value from our analyses and is
consistent with that of Ref. [8], and adjust � to obtain the
best scaling fit. We end up with � � 2:72�8�. The fit is
surprisingly good for all the data with L’s indicated in the
figure and at T from 0:81Tc to 7:2Tc. The slope of the
straight line in the range jxj � 1 is 2.72 (� �). Note that
data points on the line are not only those at sufficiently high
temperatures with � ’ � from Eq. (11) but also those in the
critical range with �
 �
 L.

Figure 5 shows an extended FSS plot for �SG. This plot
is obtained by fixing Tc � 1:11 and � � 2:72 and by
adjusting 	 to give 	 � �0:40�4�. We obtain quite satis-
factory scaling for all our data. In contrast, a conventional
FSS plot using the variable t as shown in the inset is rather
poor except for the immediate vicinity of x � 0. The fit
yields a small apparent value of � � 1:47�3� similarly to

10−2

10−1

100

 0.1  1

ξ(
L

,T
)/L

|1−β2/βC
2 |(TL)1/ν

L=32
L=24
L=16
L=12
L= 8

0

0.2

0.4

0.6

0.8

1

-2 -1  0  1  2  3  4

g(
L

,T
)

(1−β2/βC
2 )(TL)1/ν

FIG. 4 (color). An extended FSS plot of ��L; T�=L of 3d-ISG.
The straight line with slope 2.72 ( � �) represents an expected
asymptotic form of the scaling function. The inset shows the FSS
plot of the Binder parameter.
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FIG. 3 (color). An extended (conventional) FSS plot for the
2d-IF susceptibility � normalized by �L
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the previous conventional FSS analyses [8,9]. In Fig. 6 we
demonstrate conventional and extended scaling plots for
�SG versus �. The comparison of the two implies that our
scaling scheme with (ii) and (iii) is definitely more appro-
priate also for the 3d-ISG.

One can remark that our extended scaling scheme with
only the leading term for each divergent observable gives a
high quality fit over the entire range of L and T examined.
Another important result here for the SG study is that the
extended FSS analyses on �, g, and �SG with the implicit
assumption that corrections to scaling are weak yield a
unique critical parameter set. This is in sharp contrast to
standard FSS methods for which the estimate for � ob-
tained from � scaling with the same assumption is consid-
erably smaller than that from � or g scaling [8,9]. In this
context, we note that numerical data on the same 3d-ISG
model have also been analyzed using t scaling together
with strong correction to scaling terms [16,17]. We have
checked that our data can be analyzed equally well using a
very similar method to that of Ref. [16], and the excellent
fit to the data from the extended scaling without corrections
to scaling is obtained with two fewer fitting parameters.
This does not imply that corrections to scaling are absent,
but just that their influence on the fits examined here is
rather weak.

In conclusion, by considering the intrinsic structural
form of high temperature series developments, we have
proposed an extended scaling scheme with appropriate
scaling expressions for thermodynamic observables in fer-
romagnets and spin glasses, and have demonstrated the

results which support it strongly. One of them is the direct
comparison of our extended scaling on � vs � with that of
the conventional one. Another is the result that, within our
scheme, the leading order critical power-law expressions
with a coherent set of critical parameters remain good
approximations to the true behavior over a much wider
temperature range than with the standard t scaling. From
these results we consider that our extended scaling scheme
with the variable � is more fundamental than the conven-
tional t scaling.
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