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Qubit Measurements with a Double-Dot Detector

T. Gilad and S. A. Gurvitz

Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 14 June 2006; published 14 September 2006)

We propose to monitor a qubit with a double-dot (DD) resonant-tunneling detector, which can operate
at higher temperatures than a single-dot detector. In order to assess the effectiveness of this device, we
derive rate equations for the density matrix of the entire system. We show that the signal-to-noise ratio can
be greatly improved by a proper choice of the parameters and location of the detector. We demonstrate that
quantum interference effects within the DD detector play an important role in the measurement.
Surprisingly, these effects produce a systematic measurement error, even when the entire system is in

a stationary state.
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The single electron transistor (SET) is a sensitive device
for quantum measurements [1-3]. It can be used as a
monitor of a charge qubit, provided that the energy level
E, carrying the current is close to the Fermi levels of the
reservoirs u; r [see Fig. 1(a) and 1(a’)]. Then, because of
the electrostatic repulsion U between the electrons, the
SET current / drops when the qubit is in the state E,, as
in Fig. 1(a").

It is clear that one needs very low reservoir temperatures
in order to use the SET as a sensitive detector. This require-
ment can be weakened by taking a double dot (DD) for
monitoring the qubit state, Fig. 1(b) and 1(b’). In contrast
with the SET temperature (7) of the reservoir will not
affect the current if u; — 7 > Ey > up + T [4,5].

Because of quantum interference effects, the dynamics
of the measurement process using the DD detector is more
complicated than with the SET detector. An electron flow-
ing through the DD can be trapped in a linear superposition
of the dot states. As a result, quantum interference could
modify the signal in such a way that the DD cannot monitor
the qubit. It is necessary to analyze the influence of the DD
on the qubit motion (and vice versa) in order to establish
the optimal conditions for utilizing the DD as an effective
quantum detector. This can be done by solving the
Schrodinger equation describing the combined system of
qubit and detector.

In fact, the setup shown in Fig. 1(b) and 1(b’) represents
a generic class of nondemolition quantum measurements
where a measured system interacts with only one state of
the apparatus, while the apparatus may be in a superposi-
tion of states. This can take place in many devices based on
interference, for instance in an electronic Mach-Zehnder
interferometer [8,9]. We therefore believe that our analysis
of a qubit interacting with the DD detector can be useful for
many different quantum measurements.

Let us describe the entire setup shown in Fig. 1(b) and
1(b’) by the tunneling Hamiltonian H = H, + H;y + Hyy,,
where
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H, = E]aIra] + Ezagaz + Q(airaz + a;ral),
Hy; = Hy + EO(C;rcl + c;rcz) + y(c}Lc2 + c;cl)

+ Z(Qﬁc?cﬁ + ch;fcf + H.c.) )
)

+ l_]lzc;rclc;rcz,

H, = Ua;r azc;rcz

are the qubit and the DD Hamiltonians, and H,, is their
interaction. Here at(a) is the creation (annihilation) op-
erator for the electron in the qubit and ct(c) is the same
operator for the DD; () is the coupling between the states
Ia}L’ZIO) of the qubit, and 7y is the coupling between the
states |cf2|0> of the DD. The Hamiltonian H, =
SALEL (KT ek + ER(cR)TeR] describes the reservoirs,
where Q’;'R are the couplings between the right and left
dots with the right and left reservoirs. We assume weak
energy dependence of these couplings, Qﬁ‘R =~ (); g. Then
the corresponding tunneling rates are I'; p = 27p; RQ%’ R
where p; g are the density of states in the reservoirs. The
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FIG. 1 (color online). The qubit measurements using the SET

detector (a),(a’) and the DD detector (b),(b). I'; » and y denote
tunneling rates to the reservoirs and the interdot coupling.
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latter quantities are also weakly dependent of energy. The
last term in H,; describes the interdot repulsion. For
simplicity we consider electrons as spinless fermions.
Using the technique developed in Refs. [10,11] for the
case of large bias voltage, V = u; — ug, we can partially
trace out the reservoir states in the equation of motion for
the density matrix of an entire system, i0 = [H, ¢]. As a
result we arrive at the Bloch-type rate equations for the
reduced density matrix, o7;(#), describing the qubit-
detector evolution, where the indices i, j denote all avail-
able discrete states of the detector-qubit system and n

denotes the number of electrons which have arrived at
|

the right reservoir by time ¢. In our case, Fig. 1(b) and
1(b’), the available discrete states are labeled (a, b, c, d),
denoting the cases that the DD is empty (a), the left dot of
the DD system is occupied (b), the right dot of the DD
system is occupied (c), and both dots are occupied (d),
while the electron of the qubit occupies the level E; [see
Fig. 1(b)]. Correspondingly, (a’, b', ¢’, d') denote the same
states but where the electron of the qubit occupies the level
E, [see Fig. 1(b")]. If the interdot repulsion is large, U, >
V, the states d, d’ do not contribute terms to the equations
of motion. We obtain in this case [10-12]

on, = —Tpoh, + Trot ' +iQ(a” , — 0", ), (2a)
dZ’a’ = _FLO-Z’u’ + FRO-Z’;’I + iQ(O’Z,a - O-Za' ’ (Zb)
oy, = Upog, +iQ(ay, — opy,) +iy(op, — oly), (2¢)
(j'Zrh/ = FLO'Z/M/ + ZQ(UZ/h - O-Zb') + i‘y((TZ/L./ - O'IZ/b/), (Zd)
ot = —Trot. +iQ(a?, — o) + iy(ol, — o},), (2e)
o = —Trot, +iQoh, —ol,) +iy(al, — o) (2f)
d-Zu’ = lQ(a’Z“ o O-Z’u’) o FLa-Za’ + FRO-ZC_’I’ (Zg)
oy, = iQay, — o) +iyle), —at)+ ot (2h)
. . . [k .
oy = iQ(ay, — o},) + iy(oy, — ol) — TO'ZC, (21)
. . . . I'z .
O-Z’C/ = ZUUZ/C/ + ZQ(O-Z/C - O-ZC/) + l’)’(O'Z/bf - O-ZIC/) - 70-216U (2])
o', =iUo", + iQ(oh, — a’ﬁ,c,) + i‘y(a’i‘b, - O'ZC/) — o, (2k)
. . . . I'x
o}, = iUal}, +iQa}, — of,.,) +iy(o},, —o'.) — 7(’2@/’ QD
o, =iQ(o", — o, )+ iy(c", — o )—&0" (2m)
cb’ cb c'b’ YO bb' 2 ch'"

Note that these equations are obtained from the original
many-body equations i@ = [H, ¢] without the explicit use
of any Markov-type or weak-coupling approximations in
the case of large bias voltage, V > I'; z, U [10,11]. There
are no other limitations on U, in contrast with our analysis
of the SET detector [12].

Equations (2) are different from the standard master
equations, describing a quantum system interacting with
the environment (detector) by keeping track of the environ-
ment variables. In our case this is the number of electrons
(n) arriving at the collector. This allows us to find the time
evolution of the qubit and the detector at once. For in-
stance, the qubit behavior is described by the (reduced)
density matrix o, (1) = {0 ,5(1)} with @, 8 = {1, 2}, where
o =300 + oy, +0l), o= (0, oy, +
O'Zc/) and Oy = 1— g11.

On the other hand, by tracing out the qubit variables we
obtain the probability of finding n electrons which have
arrived at the collector, P,(t) = Y ;07,(t). This quantity
allows us to determine the average detector current and its
shot-noise spectrum. The former is given by

I(1) = e nP,(1) = el'rog(?), 3)

where og(t) = > [0t (1) + o7, ,(t)]is the probability that
the right dot is occupied. The shot-noise spectrum, S(w), is
obtained from the McDonald formula [13,14]

S(w) = 262w f drsin(@)S 2P0, @)
0 n

One finds from Egs. (2) and (4) that
S(w) =2e*wlRIm[Z. (w) + Z..(w)], (5)

where Z;(w) = [§,(2n + 1)o}(t) expiot)dt. These
quantities are obtained directly from Egs. (2) after the
corresponding integration over ¢ [15].

Consider first the static qubit, = 0. Solving
Egs. (2) for this case one finds that the stationary current,
I = I(t — o) obtains the value I, = 'z x(U = 0) when
the qubit is in the state E,, and I, = ['xGx(U) when the
qubit is in the state E,, Fig. 1(b) and 1(b’), where
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&R(U) = 2 T °
U+ 3+ 72+

(6)

As expected, the detector current decreases whenever the
electron of the qubit is close to the DD detector. Consider
now () # 0. We assume that for an “ideal” detector its
average current would follow the qubit motion [16],

(1) = Loy, (1) + L[1 — o (1)]. @)

This condition, however, cannot be fully met since the
detector’s response is limited by the rate of tunneling
from the right dot to the collector. Nevertheless, if this
transition is fast enough compared to the qubit frequency,
I'r > Q, one expects to approach Eq. (7).

Let us compare o, (¢) with the average “‘signal,” [I(r) —
I,]/AI, where AI = I, — I,. The results of our calcula-
tions for y = () are presented in Fig. 2. The initial con-
ditions correspond to the qubit electron in the upper dot
and the detector current /(r = 0) = I,. One finds that the
detector does not follow the qubit oscillations well when
I'x = vy, Fig. 2(a). On the other hand, in Fig. 2(b) where
I'r > v, the detector performance is much improved, in
accordance with our arguments.

Yet, the results displayed in Fig. 2(a) are surprising. One
expects that in the steady-state limit (r — o) the average
detector current should be distributed between the values I,
and I,, with probabilities oy, and 1 — ¢y, to find the qubit
in the states E;,, respectively. Equation (7) should thus
always hold in the limit of # — oo for any such device (for
instance, the SET detector [12]). In the case of the DD
detector, however, Eq. (7) does not hold in the steady-state
limit, as seen in Fig. 2(a). In fact, this can be obtained
analytically in the limit of small U by expanding the sta-
tionary current, [ = I(t — ), Eq. (3), in powers of U.
One finds for the detector’s signal:

+mw}m~@.

®)

It follows from this expression that a mismatch between
the signal and the qubit (o) survives even in the limit
U — 0. In this case it depends only on the ratio I'z /(). The
other detector parameters y and I'; enter only in the term
proportional to U?.

AIZP+MHWMV

FIG. 2. The probability of finding the qubit in the state E|,
(dashed line) compared with the average detector signal, [1(r) —
I,]/AI (solid line) for y=Q and U =5 Q,I';, =5 Q.

So where is the “hidden” probability that is responsible
for the systematic error in the qubit measurements? It can
be recovered in the linear superposition of the detector and
qubit states. The DD current flows via two discrete energy
levels, Ey and Ejy + U. A carrier wave function thus pro-
ceeds through a linear superposition of these states, b(b’)
and c(c’). The qubit is itself a two level system described
by superposition. These different superpositions involve
the same states (b, b/, ¢, ¢') of the entire system, and hence
are entangled. This is reflected in the off-diagonal terms
o and oy, Egs. (2). As a result the superposition of
qubit states (qubit’s “phase’’) affects the DD dynamics,
leading to a violation of Eq. (7). This happens even in the
limit U — oo. In this case the state (¢’) disappears from
Egs. (2), but the off-diagonal term o, still survives in the
limit # — oo. One should note that in the case of the SET
such entanglement cannot occur. Therefore Eq. (7) holds
for the SET, even though o ,(f — o) # 0.

We find from Fig. 2 and Eq. (7) that the detector’s
performance improves when I'y >> (). At the same time,
however, its average signal decreases. In order to assess the
detector’s efficiency this signal should be compared with
its noise. An appropriate measure of the detector efficiency
is the integrated signal-to-noise ratio [2,19], s/n =
[Polllsig(@)1?/S(w)]dw/27.  The signal I, (w) =
[5L(r) — I(t — o) exp(iwr)dt corresponds to a devia-
tion of the detector current from its stationary value, and
can be evaluated using Eqgs. (2), (3), and (5). We show in
Fig. 3 how the integrated signal-to-noise ratio behaves as a
function of both U and the ratio 'y /7y, for I';, =5 Q and
v = (). A peak is observed uniformly throughout the range
of U at y = 0.4'y. The signal-to-noise ratio depends
weakly on U when U/ = 15, allowing good operation
even at low values of U. Comparing the performances of
the DD and the SET detectors, we see that the maximal
signal-to-noise ratios obtained are comparable. However,
the SET reaches these values only in the asymmetric limit
I'r > I'; [12], while the DD detector’s signal-to-noise
ratio is shown to be optimized without such a restriction.

The results so far presented refer to a qubit that is
positioned near the right dot of the detector. One may ask
what happens when the qubit is positioned near the left dot.
It was suggested in Refs. [12,20] that the performance of
any quantum detector would improve if the detector were
to operate mostly in the states where there is no actual
interaction with the qubit. By this argument one can expect
that putting the qubit near the left dot would lead to poor
performance. Indeed, in this case the misalignment of the
energy levels prevents electron propagation to the right dot,
so that the electron is pinned to the left dot. This increases
the weight of states where the detector interacts with the
qubit. On the other hand, if the qubit is located near the
right dot as in Fig. 1(b) and 1(b’), the same misalignment of
levels localizes the electron in the left dot, diminishing the
occupation of the right dot, Eq. (6). As a result, the actual
interaction with the detector decreases and so it is expected
to operate better.
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FIG. 3. The integrated signal-to-noise ratio of the DD detector.
Here y = Q, I, =5 Q.

Our conclusion about the asymmetry with respect to the
qubit’s location can be confirmed by direct evaluation of
the detector efficiency, in the same way as presented in
Figs. 2 and 3. We can also confirm it by evaluating the
power spectrum of the detector current, S(w), via Eq. (5).
This displays a pronounced peak at w = 2 (), generated by
the qubit oscillations. It was argued in Ref. [18] that the
peak-to-background ratio, S(2Q2)/S(w — o0), is a measure
of the detector efficiency. Figure 4 exhibits this ratio for the
two qubit positions as a function of U. As we increase U
(the misalignment of the levels) we find that the two curves
separate. Thus, the setup with the qubit near the right dot is
more effective, in accordance with our arguments. Note
that the peak-to-background ratio for this setup depends
weakly on U for U/} = 15. We have already noted that
the signal-to-noise ratio shows a similar behavior.

We can show that the maximal value of the peak-to-
background ratio for the DD detector approaches 3 when
I's, U > v, Q (the dependence on I'; is not essential). The
same maximal value was obtained for the SET detector
[12]. Therefore, while both detectors are sensitive mea-
surement devices, they do not reach the effectiveness of an
ideal detector [18].

In summary, we have proposed the use of a double-dot
structure for the measurement of a charge qubit. We ob-
tained a set of rate equations describing the entire system
and displayed the conditions under which such a measure-
ment is effective. We found the measurement to be most
sensitive when the detector operates mainly in the states
where no interaction with the qubit takes place. We further
demonstrated that, because of quantum interference effects
inside the detector, the stationary current is not determined
solely by the probabilities of the stationary qubit, but
reflects the qubit phase as well.
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FIG. 4. The peak-to-background ratio of the current power
spectrum as a function U for I'; =5 Q, ', =10 Q, and y =
€). Solid line: qubit positioned next to the detector’s left dot,
dotted line: qubit positioned next to the detector’s right dot.
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