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We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer
quantum Hall regime supports a nonchiral Luttinger liquid at an armchair edge. This behavior arises due
to the unusual dispersion of the noninteracting edge states, causing a crossing of bands with different
valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a
spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged
excitations, and has a power law tunneling I-V with a nonintegral exponent. In proximity to a bulk lead,
the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state.
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Introduction.—Two-dimensional carbon sheets [1],
known as graphene, are emerging as one of the most
exciting new systems supporting the quantum Hall effect.
This material is different than more standard two-
dimensional electron gases (2DEGs) because in the ab-
sence of a magnetic field the single particle spectrum is
linear in the vicinity of two inequivalent points in the
Brillouin zone. The low-energy states near these points
are described by the Dirac equation [2], and in a strong
magnetic field the quantum Hall steps that emerge are
shifted relative to standard 2DEGs [3,4]. This effect arises
because the spectrum of the Dirac equation with a mag-
netic field has doubly degenerate Landau levels (LLs) for
each spin, with one pair at zero energy, half of which are
filled in the nominally undoped situation, yielding a shifted
step pattern in the Hall conductance.

In an undoped standard 2DEG system, there is little
interesting electron physics because the filled valence
states are far below the chemical potential. By contrast,
the partially filled LLs at zero energy in graphene allow for
interesting low-temperature physics even in this nominal
‘‘vacuum’’. When interactions are included, the half-filled
zero energy states represent a multicomponent system,
which in the absence of spin or valley splitting potentials,
and ignoring small symmetry-breaking terms due to the
lattice structure [5], spontaneously polarizes due to ex-
change [6,7]. In this situation, the vacuum is a quantum
Hall ferromagnet, with an associated low-energy spin
wave.

In addition to these surprising bulk properties, graphene
also has an unusual edge structure even in a noninteracting
picture [8]. This is illustrated in Fig. 1, which shows the
tight-binding energy levels for the pz orbitals of a narrow
graphene ribbon with ‘‘armchair edges,’’ illustrated in the
inset, and a perpendicular magnetic field. The electronic
states with momenta ky are approximately localized around

guiding center positions X � ky‘
2, with ‘ �

��������������
@c=eB

p
, and

B the magnetic field. The degenerate levels near the center

of the figure may be identified as Landau level states.
Besides X, these states have two internal quantum num-
bers, a ‘‘valley’’ index with two distinct values, and the
spin index. When X approaches an edge, the levels disperse
as is apparent in Fig. 1, with the lowest Landau levels
supporting both upward (particlelike) dispersing states
and downward (holelike) dispersing states [8]. Because
the Fermi level for undoped graphene—the ‘‘graphene
vacuum’’—lies precisely at energy " � 0, the character
of the filled states change as X approaches the edge [9], as
may be explicitly seen in Fig. 1.

In this work, we demonstrate a remarkable effect when
this edge structure and the quantum Hall ferromagnetism
are both taken into account. Under appropriate circum-
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FIG. 1 (color online). Energy bands for electrons in a graphene
ribbon with armchair edges in a magnetic field from tight-
binding calculations. a0 � lattice constant, unit of energy "1 ����

2
p
�a0=‘. ky � X=‘2 with X the guiding center coordinate. B �

100 T; ribbon width is 460 Å. Solid black lines are spin up
states, red dashed lines are spin down. Inset: Graphene ribbon
with armchair edges.
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stances undoped graphene forms a coherent domain wall
(DW) between the spin-polarized state in the bulk and an
unpolarized region at the edge. The low-energy theory of
this DW has a U(1) symmetry with a Luttinger liquid
Hamiltonian [10]. More specifically, the DW may be de-
scribed by a variational wave function of the form

 j�i �
Y
X<L

�
cos

��X�
2
� sin

��X�
2

ei�Cy�#XC�"X

�
jVaci; (1)

where Cy�"X and Cy�#X create electrons in the two levels
closest to the Fermi energy, X < L for an edge located at L,
jVaci denotes the bulk undoped graphene state (i.e., vac-
uum) which is partially polarized since the two spin up
lowest LLs are fully occupied, and ��X� and � are varia-
tional parameters. An example of ��X� found by minimiz-
ing the effective energy functional is illustrated in Fig. 2.
The energy of the state is independent of �, indicating a
spontaneously broken symmetry in the DW ground state,
with an associated gapless collective mode which may be
understood as states in which � has a spatial gradient [11–
13]. Gradients in � carry a charge density, and a full 2�
rotation contains a single electron above the vacuum
[14,15]. Thus this system supports gapless charged
excitations.

This coherent DW may be probed by tunneling into it
from a bulk metallic lead [16]. For a standard 2DEG, in the
undoped case the system trivially behaves as an insulator,
and for integer quantum Hall edge states, one finds a
metallic response [16]. For the coherent DW, we expect a
power law tunneling I-V, with exponent determined by the
pseudospin stiffness and the strength of the confinement
potential. This is quite different from standard quantum
Hall edges, where the tunneling exponent is thought to be
set by the bulk filling factor [17]. By varying the strength of

the electron-electron interaction (for example, by a screen-
ing gate) or the edge confinement potential, one can vary
the tunneling exponent, and in principle may drive the
system through a quantum phase transition in which the
tunneling perturbation becomes relevant in the renormal-
ization group sense. This presumably drives the system
into a metallic state with a linear I-V. We now provide
details of these results.

Pseudospin ferromagnetism in graphene.—We begin
with the noninteracting spectrum of the graphene ribbon
illustrated in Fig. 1. We denote the spin and valley degrees
of freedom, respectively, by � � � 1

2 and � � �1. In the
undoped system, all the negative energy states and two of
the zero energy states [18] are filled at zero temperature. In
what follows, we will ignore the LLs well away from zero
energy, since these are either completely filled or empty.

Retaining just the four lowest Landau levels (LLLs) near
zero energy, apart from constant terms the Hamiltonian
may be written as

 H �
X
�;�;X

��Ez�C
y
��XC��X � ��X��Cy��XC��X�

�
N2
�

2S

X
�;�0;�;�0;q

e�q
2‘2=2Vq��;���q���0;�0 �q�: (2)

In this expression, EZ � g�BB is the Zeeman coupling,
��X� is the energy splitting produced by the edge [8],
N�=S is the number of flux quanta per unit area passing
through the system, and Vq �

2�e2

	0q
is the Coulomb inter-

action. Note that we have assumed an SU(4) symmetric
form for the interaction. Although not exact this should be
an excellent approximation for LLL states provided the
magnetic length is much larger than the lattice constant [2].
Finally, the LLL density operators have the form ��;��q� �
1
N�

P
Xe
��i=2�qx�2X�qy�C���XC��X�qy .

The vacuum state (i.e., undoped ground state) involves
filling two of the four LLLs. For � � Ez � 0, any two
orthogonal states will yield the same energy. In the bulk
(where � � 0) the Zeeman coupling breaks this symmetry,
and in the Hartree-Fock approximation the vacuum state
may be written in the form

 jVaci �
Y
X

Cy�"XC
y
�"Xjn < 0i; (3)

where jn < 0i denotes the state with all the negative energy
levels filled. Our vacuum is thus ferromagnetic [19]. The
energy per particle of the ground state is �Ez �

1
2 � with

� � �
����
2

p e2

	0‘
the electron self-energy. Note that although

this energy scale is much larger than Ez, within our model
Ez picks out which two states are occupied.

The ferromagnetic vacuum supports four collective neu-
tral excitations, which may be approximately generated by
applying the operators
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FIG. 2. Example of a domain wall configuration. cos���X�=2�
( sin���X�=2�) denotes the amplitude for an electron to occupy a
spin up electronlike (spin down holelike) single particle state
near the edge.
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 ��;�0#;"�q� �
1

N�

X
X

e��i=2�qx�2X�qy�C��#XC�0"X�qy (4)

to jVaci. Each of these involves a spin flip, and two of them
also include a valley density wave. Because of the SU(4)
symmetry of the interactions, all four excitations are de-
generate with energy at long wavelengths !0�q� 	 2Ez �
4��sq2‘2, with �s � 1=16

�������
2�
p

in units of e2=	0‘. This is
precisely the form one expects for a Heisenberg
ferromagnet.

Coherent domain wall at the edge.—As discussed
above, near the edge of the system an electronlike edge
state crosses a holelike edge state at the Fermi level. In a
noninteracting system this would lead to a sharp change in
the internal state of the electrons as one approaches the
edge. However, since the system bears ferromagnetic prop-
erties such a change would induce a large exchange energy
cost. Thus the ground state does not precisely adhere to the
lowest energy single particle state, and changes in a more
continuous fashion. If we regard the amplitudes of the two
states closest to the Fermi energy as components of an
effective spin-1=2 pseudospin, we can regard the transition
region as a DW in the effective magnetization of this
pseudospin. Equation (1) describes this DW when ��X�
passes from 0 to�. The energy of this state can be shown to
have the form [20,21]

 E ’ �‘2�s
X
X<L

�
d�
dx

�
2
�

X
X<L

���X� � Ez� cos��X�;

provided ��X� does not vary rapidly on the scale of ‘. This
sine-Gordon-like energy functional may be straightfor-
wardly minimized numerically [21], yielding results such
as those illustrated in Fig. 2.

The appearance of a DW in this system may be regarded
as a kind of edge reconstruction. We note that for an
appropriately chosen edge potential, a standard 2DEG
can support other types of edge reconstruction [22], driven
by the Hartree interaction which favors a slowly varying
edge density. The DW by contrast is driven by the elec-
tronic structure and will be present for a sharply defined
graphene edge, and as we shall see has different tunneling
characteristics.

Because the energy of j�i is independent of �, it is
immediately clear that this represents a broken symmetry
state which must support a gapless mode. This may be
described by an effective action

 S0 �
Z
d�dy

�
�

2
m�y; ��2 �

~�
2

�
@�
@y

�
2
� im�y; ��

�
@�
@�

��

(5)

where � is imaginary time. The dependence of S0 only on
gradients of� guarantees that there will be a gapless mode
dispersing linearly with ky, the wave vector along the
domain wall. The field m is the conjugate variable to �
and is a measure of fluctuations in the difference of particle

number in the two levels of the effective pseudospin, (� " )
and (� # ). This is controlled by the position of the DW
relative to the edge of the system, so m may be qualita-
tively viewed as a displacement variable. The constants �
and ~� may be estimated from ��X� and Ez � ��X� using
spin-wave theory [13,21].

It is well-established that spin-textures in quantum
Hall ferromagnets carry real physical charge densities
[14]. If we use the variables ��r� and ��r� to specify the
direction of the local pseudospin, charge density fluctua-
tions may be written as 
��r� � e

4� �@y��r�@x cos��r� �
@x��r�@y cos��r��. In the region of the DW [15],R
dx@x cos��r� �

R
dx@x cos��x� � 2, so 
��y� �R

dx
��r� � e
2� @y��y� [23]. Thus if ��y� overturns by

�2� along the DW, charge �e accumulates. This phase
overturn can be spread over the entire length of the DW,
leading to an arbitrarily small energy ~�

2

R
dy�@y��2, so that

charge can be introduced into the DW at arbitrarily low
energy. This has important implications for tunneling.

Tunneling from a metallic electrode.—The geometry for
tunneling into the DW is illustrated in Fig. 3. We assume
the electrons in the lead are in a Fermi liquid state and can
be modeled as noninteracting electrons in a magnetic field,
and support field operators �y��x; y; z� which create elec-
trons of spin � at (x, y, z). Choosing our origin of coor-
dinates such that the DW is located at x � 0, and the
surface of the lead at z � 0, the imaginary time action
for tunneling between the lead and the DW may be written
as

 Stun�
t
�

X
!n;�

Z
dy�
��x� 0;y;z� 0;!n� ��y;!n��H:c:;

where  � is the annihilation operator for an electron of
spin � in the domain wall and t is the tunneling am-
plitude. Using standard bosonization [17], one may write

the fermion operator in the form  �";#��y; �� �

e��=��i��y;��=2ei2�
R
x

�1
dy0m�y0;��. After tracing out the lead

degrees of freedom (details will be presented elsewhere

x

y
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FIG. 3 (color online). Geometry for tunneling into the coherent
domain wall.
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[21]), one finds the partition function may be written in the
form Z /

R
D�Dme�S0�~S, with

 

~S 	 �t2
X
�

Z �

0
d�1d�2

Z
dy 
��y; �1�K��1 � �2�

�  ��y; �2�: (6)

Taking the zero temperature limit, one may show K �
1=��1 � �2� for large j�1 � �2j.

Our first question is whether ~S qualitatively affects the
state of the system; i.e., is it a relevant operator? A pertur-
bative renormalization group analysis may be applied to ~S
[21], leading to the result

 

dt2

d‘
� ���� 2�t2

with the anomalous dimension � � �x� 1=x�=2, and x �
4�

���������
~�=�

p
. Estimates of ~� and � using a spin-wave approach

[21] yield � 	 6:8, 6.0, and 5.3 for B � 15, 25, and 45 T,
respectively. This indicates that under usual conditions, ~S
is irrelevant, and the DW remains in a Luttinger liquid
phase. The physical reason for this is that the confinement
energy (�) of the DW is small compared to the stiffness of
the phase angle (~�), because the Zeeman energy which sets
the scale of � is small compared to the electron-electron
energy scale. This suggests that enhancing � can drive the
system into a state in which ~S is relevant, perhaps by
judicious use of a gating geometry. In this situation the
coupling to the metallic lead becomes important in the low-
energy physics, and presumably a current injected into the
domain wall will behave metallically.

The irrelevance of ~S under ambient conditions indicates
that we can compute the tunneling conductance perturba-
tively [10,24]. The resulting expression involves the do-
main wall correlation function h �y; �� y�y; 0�i � 1=��,
whose form leads to a power law I-V with an exponent
set by �. It should be emphasized that this differs consid-
erably from edge state tunneling in standard 2DEGs, where
the exponent is set by the bulk filling factor, even for
reconstructed edges when backscattering due to disorder
is taken into account [17]. Such backscattering is not
possible with nonmagnetic impurities in the DW, because
scattering from an electronlike to a holelike state requires a
spin flip. The anomalous exponent of the DW is robust, and
is sensitive to the edge potential through �. In these ways
the Luttinger liquid properties of the DW are distinct from
those of standard quantum Hall edge states.
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