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The electronic states in incommensurate helical magnets are studied theoretically from the viewpoint of
the localization or delocalization. It is found that in the multiband system with a relativistic spin-orbit
interaction, the electronic wave functions show both an extended and localized nature along the helical
axis depending on the orbital, helical wave number, and the direction of the plane on which spins rotate.
The possible realization of this localization is discussed.
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Helical magnets have been studied for a long time
since their first discovery by Yoshimori [1]. Their ground
states are determined by the (frustrated) exchange inter-
actions and their Fourier transformation J�q�. Various
properties including the spin wave excitations are ana-
lyzed theoretically for many materials (see [2] for an
early review). Helical spin structure is recently attract-
ing revived interest from the viewpoint of both dielec-
tric and transport properties. One example is the ferro-
electricity induced by the helical magnetic order.
Theoretically, the spin current associated with the noncol-
linear spin configuration is proposed to induce the electric
polarization [3]. Experimentally, it is now found that this
mechanism is at work in RMnO3 [4–6] and in other
materials [7–10]. Another new aspect is the anomalous
transport properties associated with the onset of helical
spin structure in metallic systems such as �-MnO2 [11],
SrFeO3 [12,13], and MnSi, (Fe,Co)Si [14]. These develop-
ments urge the microscopic theory of electronic states to
understand the physical properties associated with the
helical spins.

In the absence of the spin-orbit interaction (SOI), one
can rotate the spin frame so that the z axis is parallel to the
direction of the local spin. In this rotated frame, the spins
are aligned ferromagnetically and the original spin struc-
ture is reflected in the magnitude and phase of the effec-
tive transfer integrals. This leads to the double exchange
interaction [15] and various phenomena related to the spin
chirality [16,17], respectively. When we consider the state
of single helical wave vector q, the relative angle be-
tween the neighboring spins does not break the original
translational symmetry. Furthermore, there is no spin chi-
rality, i.e., no fictitious magnetic field induced by the solid
angle subtended by the spins. Therefore the Hamiltonian in
the rotated spin frame preserves the periodicity of the
original lattice, and hence one can define the Bloch wave
function.

This situation is modified in an essential way when the
SOI is taken into account. In this case, one cannot rotate the

spin frame with the orbitals being intact, and the transfer
integrals forming a matrix between ions are transformed in
a nontrivial way. Therefore, in general, we expect the
incommensurate (IC) modulation of the transfer integrals
and even of the site energies in the effective Hamiltonian in
the rotated frame.

The localization or delocalization (L-DL) of electronic
states in an IC potential is an old issue [18]. Unlike in the
case of commensurate periodic potentials, the eigenstates
are not the extended Bloch states in the case of IC poten-
tials. Therefore the band structures would be unusual, i.e.,
highly fragmented, in those IC potentials. The central issue
is whether electronic states are extended or localized in this
kind of potentials, namely, metal-insulator transition
(MIT). Aubry and Andre (A-A) [19] have shown that in
a simple 1D model MIT occurs simultaneously for all
energies when the strength of the IC potential V0 is equal
to the transfer integral t; i.e., if V0 is greater than t, the
electronic states localize. We can also regard the A-A
model as a two dimensional tight binding model with IC
magnetic flux. Actually, the well-known Hofstadter butter-
fly is closely related to this model [20]. Using the trace
map technique, Kohmoto et al. [21] has exactly studied the
scaling properties of the Fibonacci lattice system, which
can be regarded as the A-A model with IC modulation
Qa=2� being the inverse golden mean. Similar problems
with the IC transfer integral are also investigated by
Kohmoto et al. [22].

In this Letter we investigate the L-DL of electronic
states in IC helical magnets. First, we study a model of
5d orbitals in cubic symmetry taking into account the SOI.
We found that as SOI increases, the localization caused by
IC starts from the specific t2g wave functions at around q�
�=a (a: lattice constant). In order to scrutinize this local-
ization, we construct an effective single-band model for t2g
bands. With this effective model, the localization lengths
are studied in more detail including its dependence on the
angle ’ between the spin rotation angle and the helical
wave vector.
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We start with the following electronic model:
 

H � HU �HSO �Hd �Ht;

HU � �U
X
j

~ej � ~Sj; HSO � ��
X
j

~Lj � ~Sj;

Hd �
X
j

��jd
�
j�ihd

�
j�j; Ht �

X
hi;ji

t�ijjd
�
j�ihd

�
i�j:

(1)

In the octahedral ligand field, the d orbitals are split into eg
and t2g orbitals [23]. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energies lower than eg orbitals, i.e., dx

2�y2
, and

d3z2�r2
by 10Dq, but the order is reversed as we take the

hole picture in the following, i.e., �t2g � �eg � 10Dq. The
on-site SOI is considered, the matrix elements of which are
calculated by ~L � ~S with ~L ( ~S) being the orbital (spin)
angular momentum. It is noted that ~L has no matrix ele-
ments within the eg sector, while nonzero coupling oc-
curs within the t2g sector and between the eg and t2g
sectors. Considering the hopping between d orbitals and
oxygen orbitals [24], we derive the effective transfer in-
tegrals t�ij between d� orbitals at neighboring magnetic
ions i and j. We took the values tyz � tzx � 0:1, t3z

2�r2
�

0:3, and txy � tx
2�y2
� 0. In HU of Eq. (1), the magnetic

moment at site j is described by the unit vector ~ej �
�cos�j sin�j; sin�j sin�j; cos�j� and ~Sj denotes the elec-
tronic spin operator at site j. We assume the IC helical
magnetic structure for ~Sj along z axis, which is on the spin
zx plane, realized as a result of the frustrated spin exchange
interaction. We focus on the ordered ground state proper-
ties, and hence the mean field treatment gives a good
description of the system. We assume the ferromagnetic
spin configuration perpendicular to the helical wave vector
~q, and hence kx, ky are good quantum numbers; i.e., the
electronic wave functions are plane waves along x and y
directions. We fix kx � ky � 0 hereafter, and consider the
one-dimensional (1D) model only along the z direction.
Figure 1 shows the calculated density of states as a function
of the helical wave number q with the color specifying the
localization length 	. We note here that the sample size is a
prime number 199, and helical wave numbers q’s are taken
to be proximate to the IC values. All the band states from
the eg orbitals are extended due to the weak SOI, and hence
are omitted in Fig. 1. The green region is the extended
states, while the blue one is strongly localized within the
scale of lattice constant. We took the values 10Dq � 3,
U � 1:4, and � � 1:0.

The density of states are understood as follows. The
largest splitting between eg and t2g occurs due to the ligand
field 10Dq in Eq. (1). Then the t2g bands are further split
into bands of �7 and �8 origin, the latter of which is upper
in energy since we take the hole picture. Then both the
bands are further split by the spin exchange field U.

By using the iterative method developed by MacKinnon
[25], we can calculate the Green’s function G�N�1;N �

h1j�E�H��1jNi, which connects both ends of the long
chain. G�N�1;N is still a 10	 10 matrix and the Lyapnov
exponent; i.e., the inverse of the localization length 	 is
obtained as 1

	 � �limN!1
1

2N lnTrjG�N�1;Nj
2. The blue color

at around q� �=a means the strong localization along the
helical axis. When we change �, we still observe the
localization down to �� 0:2. Therefore, we conclude
that the localization starts in some part of the electronic
spectrum at around q � �=a as one increases the SOI. The
most remarkable point we can grasp from the above figure
is that there are both localized and extended states at
different energies for the same q [26]. This is in sharp
contrast to the case of the A-A model where all the states
are either extended or localized depending only on the ratio
V0=t as mentioned above.

In order to study this localization in more depth, we now
derive the effective model for a limiting case, i.e., 10Dq

3�=2
 U
 t. Even though this is not necessarily a
suitable limit for realistic systems, it clarifies why 	 de-
pends on the orbitals. By taking into account the spin
degree of freedom, there is sixfold degeneracy of the t2g
energy levels. Because of the on-site SOI, this degeneracy
is lifted and we have two groups of spin-orbit coupled
states, labeled �7 and �8 [23]. The twofold degenerate
states, �7, and the fourfold degenerate one, �8, are given

FIG. 1 (color online). Density of states and color map of the
localization length 	 on it for the d-orbital model Eq. (1).
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, respec-
tively, where the quantization axis of spin is taken to be
the z axis. Henceforth, we assume that the spin-orbit
coupling in our system is sufficiently large and focus
only on the case where the two multiplets, i.e., �7 and
�8, do not hybridize with each other.

Now, we construct the normalized state jgji to minimize

hgjj �U~ej � ~Sjjgji in the Hilbert space spanned by the
states in �7 or �8. The desired states whose spins are
parallel to the unit vector ~ej are explicitly given for �7

and �8 by jg7
j i � sin��j=2�j3�j i � e

i�j cos��j=2�j3�j i and
 

jg8
j i � e�i�3=2��jcos3��j=2�j1�j i � e

�i�3=2��jsin3��j=2�j1�j i

�
���
3
p
e�i�1=2��j sin��j=2�cos2��j=2�j2�j i

�
���
3
p
e�i�1=2��jsin2��j=2� cos��j=2�j2�j i; (2)

respectively. Here subscript j denotes the site number and
superscripts 7 and 8 correspond to �7 and �8, respectively.
Using these states, we can derive the effective Hamiltonian
H �

P
nTnc

y
ncn�1 � H:c:� Vnc

y
ncn, where cn=c

y
n denotes

the renormalized annihilation or creation operator and the
effective transfer integral Tn and site energy Vn are given as

 Tn �
2t
3

�
sin
�n
2

sin
�n�1

2
� e�i�� cos

�n
2

cos
�n�1

2

�
;

Vn � �4t=3, where �� � �n ��n�1 for �7, and
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�
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2
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2
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�
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�
;

Vn � �t�1� cos2�n� for �8.
As for the �7 case, we can write down Tn as

2t
3 e

ian;n�1 cos
�n;n�1

2 , where �n;n�1 is the angle between the

two spins ~Sn and ~Sn�1. The phase an;n�1 is the vector
potential generated by the noncollinear spin configuration,
but we can eliminate it by appropriate gauge transforma-
tion. Then we can conclude that we have no incommensur-
ability in our 1D �7 model.

As for the �8 case, on the other hand, the effective site
energy Vn explicitly depends on the local spin angle �n. If
we have the spin configuration in the plane which is
parallel to the xy plane, i.e., �n � const, and set the pitch
�� � const, Vn and Tn are constant. On the other hand, if
we have the tilt of the spin rotation plane from the above
plane to the other plane, �n is no longer a constant and then
Vn would generally be IC. jTnj also depends on both the
angles of ~Sn and ~Sn�1. Here we can conclude that in the
case where holes are in �8, the effective 1D model would
generally be IC. This explains why the upper parts of the

t2g density of states in Fig. 1 are localized more strongly,
where the wave function is mainly from �8 components.

Now we focus on the �8 case and numerically examine
whether the localization of the wave function occurs in
more details. We consider the helical spin configuration
~Sn � �S cos�qn�; S cos’ sin�qn�; S sin’ sin�qn��, where q
is the helical wave number, and ’ denotes the tilt angle
of the spin rotating plane from the xy plane (see Fig. 2).

The numerical calculations are performed for systems of
size 1009, a large prime number, with nearly incommen-
surate modulations q=2� � j=1009, (j � 1; 2; 3; . . . ). The
results are shown in Figs. 3, where the vertical and the
horizontal axes represent the energy and the helical wave
number, respectively. We take the unit where t � 1 and
a � 1. The tilt angles are ’ � 0, 30, 60, and 90 for
Figs. 3(a)–3(d), respectively. The energy spectrum in
Fig. 3(d) is almost same as the lowest band of �8 bands
in Fig. 1. In Fig. 3, the localization length increases as the
color changes from blue to green. The figures clearly dis-
play that there are domains of strong localization 	� 1
when we have a finite tilt angle ’. On the other hand, for
’ � 0 the transfer integrals Tn and the on-site potentials
Vn are constants, and there are no localized states. Even in
the most suitable case for localization, i.e., Fig. 3(d), how-
ever, the helical wave number q should be approximately
in the range of 2�=3< q< 4�=3 for the localized states.
This is because the long period of the helical structure
means the slowly varying and weak perturbations in the
rotated frame, and hence does not cause the localization.

Now we discuss the possible realization of the localized
states in realistic systems. From the above results, three
important conditions for the localization are (i) strong SOI,
(ii) short helical period, and (iii) the direction of the rotat-
ing spin plane. The SOI increases as the mass of the atom
gets heavier, and hence the present model becomes more
relevant from the viewpoint (i). For 3d orbitals of transition
metal oxides, the SOI is typically of the order of 20–
30 meV, which is an order of magnitude smaller than the
transfer integral t. Therefore the localization length is
expected to be rather large, and hence the disorder effect
such as the impurity scattering might hide the IC effect.
Therefore, even though �-MnO2 [11] and SrFeO3 [12,13]
show interesting transport properties, it is unlikely that the

FIG. 2 (color online). Spin plane tilted by angle ’ from the xy
plane (left). The helical spins are rotating on the tilted plane
placed periodically placed along the z axis. Blue arrows repre-
sent spins, while a denotes the lattice spacing (right).
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localization found in this Letter is relevant to these mate-
rials. 4d or 4f, 5f orbitals, where SOI is larger than
�0:3 eV, are more promising. Actually there are many
rare-earth metals showing the helical spin structure such as
Tb, Dy, Ho, Er [27,28]. From the condition (ii), it is rather
hard to find the short period helical spin structure. It is
typically 4a-5a or even larger [12,14,27,28]. From this
viewpoint, MnO2 [1,11] is an interesting case, but the
localization is unlikely as discussed above. As for the
condition (iii), we need more study since only the cubic
case has been considered. The directional dependence of
the spin plane might be useful to control the L-DL by an
external magnetic field.

Even though the conditions for localization discussed
above are rather stringent, which explains why it has never
been observed experimentally thus far, it will play a vital
role in the quantum transport properties of the system once
realized. One direct consequence is the large anisotropy of
the resistivity between parallel and perpendicular to the
helical axis, i.e., it should be much more resistive in the
parallel direction [29]. This can be detected, for example,
as a drastic change of the resistivity anisotropy at the
commensurate-incommensurate transition.

In conclusion, we have studied the localization or delo-
calization of the electronic states in helical magnets. We
found the localized states under the condition of (i) strong
spin-orbit interaction, (ii) short helical wavelength, and
(iii) proper direction of the plane on which spins rotate.
The strong dependence of the localization length 	 on the
orbital is also found, which is explained by an effective
model for a certain limiting case.

The authors are grateful to S. Miyashita, Y. Shimada,
and K. Azuma for fruitful discussions. This work was
supported by NAREGI Grant, the Ministry of Education,

Culture, Sports, Science and Technology of Japan, Grant-
in-Aids for Scientific Research (S), 15104006, 2003;
17105002, 2005; and Scientific Research on Priority
Areas, 16076205, 2004.

*Electronic address: shu-t@spin.phys.s.u-tokyo.ac.jp
[1] A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).
[2] T. Nagamiya, in Solid State Physics, edited by F. Seitz,

D. Turnbull, and H. Ehrenreich (Academic, New York,
1967), Vol. 20, p. 305.

[3] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev.
Lett. 95, 057205 (2005).

[4] T. Kimura et al., Nature (London) 426, 55 (2003).
[5] T. Goto et al., Phys. Rev. Lett. 92, 257201 (2004).
[6] M. Kenzelmann et al., Phys. Rev. Lett. 95, 087206 (2005).
[7] T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev.

Lett. 94, 137201 (2005).
[8] G. Lawes et al., Phys. Rev. Lett. 95, 087205 (2005).
[9] L. C. Chapon et al., Phys. Rev. Lett. 93, 177402 (2004).

[10] G. R. Blake et al., Phys. Rev. B 71, 214402 (2005).
[11] H. Sato et al., Phys. Rev. B 61, 3563 (2000).
[12] T. Takeda, Y. Yamaguchi, and H. Watanabe, J. Phys. Soc.

Jpn. 33, 967 (1972).
[13] M. Takano (private communications).
[14] N. Manyala et al., Nature (London) 408, 616 (2000).
[15] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675

(1955).
[16] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39,

11 413 (1989).
[17] N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450

(1990).
[18] J. B. Sokoloff, Phys. Rep. 126, 189 (1985).
[19] S. Aubry and G. Andre, Ann. Isr. Phys. Soc. 3, 133 (1979).
[20] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[21] M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev.

Lett. 50, 1870 (1983).
[22] M. Kohmoto, B. Sutherland, and C. Tang, Phys. Rev. B 35,

1020 (1987).
[23] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of

Transition-Metal Ions in Crystals (Academic, New York,
1970).

[24] W. A. Harrison, Elementary Electronic Structure (World
Scientific, Singapore, 1999), p. 546.

[25] A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983),
and references therein.

[26] An early work [C. M. Soukoulis and E. N. Economou,
Phys. Rev. Lett. 48, 1043 (1982)] also found the mobility
edge in a model with the generalized potential �n �
V0�cos�Qn� � V1 cos�2Qn�� (Q : IC wave number) simi-
larly to our case.

[27] W. C. Koehler, J. Appl. Phys. 36, 1078 (1965).
[28] R. A. Cowley et al., Phys. Rev. B 57, 8394 (1998).
[29] A recent study (M. Onoda and N. Nagaosa, cond-mat/

0604120) has shown that the disorder turns the localized
states along the parallel direction to IC wave vector into an
anisotropic metallic state.

FIG. 3 (color online). Localization length 	 of the effective
single-band model for the �8 orbital with (a) ’ � 0,
(b) ’ � 30, (c) ’ � 60, and (d) ’ � 90, respectively.

PRL 97, 116404 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
15 SEPTEMBER 2006

116404-4


