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The excitation-chain theory of the glass transition, proposed in an earlier publication, predicts
diverging, super-Arrhenius relaxation times and, via a similarly diverging length scale, suggests a way
of understanding the relations between dynamic and thermodynamic properties of glass-forming liquids. I
argue here that critically large excitation chains play a role roughly analogous to that played by critical
clusters in the droplet model of vapor condensation. Unlike a first-order condensation point in a vapor, the
glass transition is not a conventional phase transformation, and may not be a thermodynamic transition at
all.
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In [1] (see also [2]), I proposed that both the dynamics
and thermodynamics of glass-forming liquids might be
determined by chainlike excitations of intrinsically disor-
dered molecular configurations. Because these excitations
appeared to pertain only to irreversible behavior—e.g., to
anomalously slow, super-Arrhenius, viscous relaxation—
it seemed remarkable that they could also govern equilib-
rium properties; thus I speculated that this situation might
imply partial violation of ergodicity at temperatures above
the glass transition. I now believe that such a drastic
departure from conventional statistical mechanics is un-
necessary. Rather, I think that the excitation chains allow
us to understand the transition between a glass-forming
liquid and a glass as an unconventional kind of phase
transformation or, quite possibly, not as a thermodynamic
phase transformation at all.

The most successful descriptions of the entropic col-
lapse of glass-forming liquids near the Kauzmann tempera-
ture have been spin-glass theories in which random,
infinitely long-range interactions simulate glassy disorder.
Such systems do not look much like liquids with short-
range interactions between the molecules. Moreover,
although such models produce qualitatively realistic ther-
modynamic behavior, it has been difficult to use them to
compute super-Arrhenius dynamics. Bouchaud and Biroli
[3], in reviewing this situation, have made an especially
thoughtful effort to find a connection between thermody-
namics and dynamics via the mean-field theories. In my
opinion, their analysis reveals deep problems associated
with any attempt to describe localized phenomena such as
droplets or domain boundaries in a theory where the range
of interactions is as long as the largest length scales in the
system. Thus, I think it is useful to explore a different
approach based only on short ranged interactions between
ordinary molecules.

Chainlike (or stringlike) excitations appear to be ubiq-
uitous in the neighborhood of jamming transitions in amor-
phous materials. For example, see [4]. A more recent
example that seems relevant to the glassy state itself, just
below the glass transition, is seen in Fig. 4 of [5], which

shows a low-frequency vibrational mode of a granular
material near an unjamming transition. The largest dis-
placement amplitudes lie predominantly along stringlike
paths. As in [1], I visualize an excitation chain in a glass as
a string of molecular displacements producing the glassy
equivalent of a ‘‘vacancy’’ at one end and an ‘‘interstitial’’
at the other. That is, an excitation chain is a momentary
density fluctuation that most probably lasts for only a few
molecular vibration periods, but may under some circum-
stances induce a long-lasting change in the system, moving
it from one inherent state to another. It is the latter possi-
bility, where the vacancy and interstitial in effect dissociate
from each other, that is relevant to alpha relaxation pro-
cesses above the glass transition. These chainlike excita-
tions also must be present in the glassy state below the
transition, where they cannot enable the system to explore
different inherent states, but must be present and contrib-
ute—perhaps only negligible amounts—to the thermody-
namics because they are thermal fluctuations just like any
other thermal excitation of the system.

There is an interestingly imperfect analogy between the
excitation-chain model of a glass and the droplet model of
a vapor in the neighborhood of its condensation point. In
the latter, one approximates the vapor as a noninteracting
gas of liquid droplets. The partial pressure associated with
droplets consisting of n molecules, when n is large, is
assumed to be pD�n� / exp��fn=kBT�, where fn is the
free energy of a size-n cluster: fn � hn� �n2=3. Here, h
is the chemical potential measured from the two-phase
coexistence point and � is proportional to the surface
energy. In the stable phase, i.e., for h > 0, pD�n� is an
exponentially decreasing function of n for arbitrarily large
n. Any cluster of molecules that reaches a substantial size n
is more likely to evaporate than to grow. On the other hand,
in the metastable phase with h < 0, there is a critically
large n beyond which pD�n� begins to increase, meaning
that droplets larger than this critical size are more likely to
grow than to evaporate. This critical droplet is the transi-
tion state for nucleation; thus, historically, the droplet
model has been used primarily for estimating condensation
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rates. Equilibrium thermodynamic properties (away from
critical points) are determined primarily by small clusters,
i.e., low-order terms in the virial expansion, for which the
droplet approximation makes little sense. There also are
intrinsic uncertainties in computing fn for realistic situ-
ations even for very large n; in particular, it is not clear how
to decide which clusters of molecules are close enough
together to be counted as droplets. Such uncertainties have
largely been eliminated in field-theoretic calculations by
looking only in the immediate neighborhood of the tran-
sition state, i.e., at the ‘‘instanton’’ [6,7], and computing
the flux through this point in function space to find the
condensation rate. The instanton theory also predicts a
branch cut in the analytic continuation of the free energy
from the stable to the metastable phase. The discontinuity
across the cut is proportional to the condensation rate; thus
there is a deep connection between equilibrium and non-
equilibrium behaviors in these systems.

The excitation-chain model of a glass has much the same
structure as the droplet model of a vapor. In [1], I argued
that the probability of thermal activation of an excitation
chain consisting of N molecular steps and extending a
distance R (in units of the average molecular spacing) is
proportional to exp���G�N;R�=kBT�, where �G�N;R� is
a free energy in the sense that it includes a sum over all the
allowed configurations of the chain. �G�N;R� consists of
several parts:

 �G�N;R� � �G1 � Ne0 � Eint � kBT lnW: (1)

The first term, �G1, is the bare activation energy, i.e., the
energy required to form the vacancy and the interstitial
regardless of whether or not these defects are well sepa-
rated from each other. The remaining terms on the right-
hand side of Eq. (1) describe the excess free energy of the
chain. Ne0, is the bare activation energy of the N links of
the chain. The average energy per link, e0, is the energy
required to move a pair of molecules far enough away from
each other to allow a third molecule to pass between them.
Eint is an energy that makes it unfavorable for the links of
the chain to lie near each other. Here I have used Flory’s
approximation for the self-exclusion energy of a polymer
chain:

 Eint�N;R� � kBTint
N2

R3 : (2)

The last term on the right-hand side of Eq. (1),W (N, R), is
a sum over chain configurations. In [1] I wrote W in the
form:

 lnW�N;R� � �N �
���T�

2
R; (3)

where exp��� is the number of choices that the successive
links in the chain can make at each step, and ��T� �
�0�T0=T�2 is the mean-square strength of the fluctuations
in e0=kBT. Here, T0 � e0=�kB is the characteristic tem-

perature determined by the energy e0; and �0 is an inverse
localization length associated with the fact that the excita-
tion chains exist in the highly disordered environment
characteristic of a molecular glass. Because lengths are
measured in intermolecular spacings, and glassy disorder is
on molecular scales, �0 must be of order unity near the
glass temperature. (I omit the diffusion term, R2=2N, from
the usual random-walk analysis because it is negligible for
the present purposes). Note that both the Flory approxima-
tion in Eq. (2) and the configuration-counting approxima-
tion in Eq. (3) make sense only in the limit of large N and
R.

The next step in this analysis is to evaluate the formation
probability for all chains of length N by finding the value
of R � R	 at which �G�N;R� is a minimum, and
then approximating this probability by pXC�N� /
exp���G	�N�=kBT�, where
 

�G	�N� � �G�N;R	�

� �G1 � NkB��T � T0� � 4��=6�3=4�kBTint�
1=4


 ���T�kBT�3=4N1=2: (4)

Note the similarity between pXC�N� and the formula for
pD�n� in the droplet model. For T < T0, pXC�N� decreases
monotonically for all N. However, for T > T0, �G	�N� has
a maximum, and pXC�N� a minimum, at a value of N, say
N	, which I identified in [1] as the length of the critically
large chain that nucleates a long-lasting density fluctua-
tion. If a chain fluctuates to a size larger than N	, it is
highly likely to continue growing without bound, and thus
to dissociate the vacancy-interstitial pair. The activation
energy for this process is

 

�G	�T�
kBT

�
�G�N	; R	�

kBT
�

�G1
kBT

�
�
3
��T�R	�T�; (5)

where the length R	�T� is

 R	�T� � 2
�
�
6

�
1=2 ��T�1=2�TTint�

1=2

��T � T0�
: (6)

Eqs. (5) and (6) recover the Vogel-Fulcher law for the
logarithm of the � relaxation time ��, which diverges
linearly at T0. Thus the excitation-chain mechanism pro-
vides a simple explanation for super-Arrhenius behavior in
glasses, and also predicts a diverging length scale R	�T�.

My thesis is that the excitation chains play a role near the
glass transition analogous to that played by large droplets
near a condensation point. The equilibrium partition sum in
the glass phase, below T0, includes a dilute population of
long excitation chains that, like the large droplets, contrib-
ute negligibly to the thermodynamics but are present none-
theless. As in the droplet model, the overwhelmingly most
important contributions to the thermodynamics come from
small, localized, thermal displacements of the molecules,
which may sometimes resemble short chains in a glass. We
certainly do not want to use the long-chain formulas to
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estimate the contributions of the short chains. Just as in the
droplet model where we cannot decide which molecular
clusters are to be counted as droplets, there is no unambig-
uous definition of a thermally excited chain; we do not
know how large the molecular displacements along the
chain must be in order for a sequence of such displace-
ments to be counted as a ‘‘chain.’’ The best we can do is
guess that these displacements are of order of the molecu-
lar spacing for critical chains of size N	, and then suppose
that this guess will become more precise if we can con-
struct the analog of an instanton theory for this system.

The crucial point is that large, rare, excitation chains are
intrinsically part of the equilibrium state of a glassy sys-
tem, both below and above T0, and that they play an
especially important role above T0 where they nucleate
transitions between inherent states. With this understand-
ing, we may deduce that the thermal equilibrium state of a
glass-forming liquid is necessarily heterogeneous on a
length scale of order R	�T�. A homogeneous glassy region
much larger than R	�T�, according to the formula for
pXC�N�, would contain a substantial population of chains
longer than N	 and thus would be unstable against changes
in size and shape. Conversely, an isolated domain smaller
than R	 could not support excitation chains and therefore
would be immobile. Presumably, the molecules in the
interiors of these domains are frozen into energetically
favorable glassy configurations determined by their frus-
trated, short-range interactions—just as in the glassy state
below T0. The boundaries between these domains must
then consist of more disordered material. In the language I
have used here, they contain a high density of vacancies
and interstitials. Pictures of such a domain structure have
appeared in numerical simulations. For example, see
Figs. 6b and 7 in [8].

Note that the excitation chains cannot cross the disor-
dered boundaries, where the vacancies and interstitials at
the ends of the chains can recombine with preexisting
interstitials and vacancies. These recombinations cause
the domain boundaries to wander slowly on the time scale
��. As a result of this wandering, there is no breaking of
ergodicity above T0. The system samples all of its state
space, but does so increasingly slowly as T decreases
toward T0. The glass-forming liquid freezes continuously
as T decreases; the frozen domains become larger and the
unfrozen molecules in the boundaries between the domains
become a vanishingly small fraction of the system. Over
long times at fixed T, any individual molecule is some-
times in a frozen state (inside a domain, locked into a cage
by its neighbors, and contributing to the entropy as if it
were in the glassy state below T0), and is sometimes
unfrozen (in a boundary region, contributing to the entropy
as if it were more nearly in a liquid state). At any given
time, the unfrozen fraction of the molecules is proportional
to the surface-to-volume ratio of the domains, 3=R	�T�.
Thus the configurational entropy per molecule, i.e., the

excess over the residual entropy in the frozen glass, in
units of kB, is

 sc�T� �
3s0

R	�T�
�

3

2

�
6

�

�
1=2 s0��T � T0�

��0T0Tint�
1=2
; (7)

where s0 is the configurational entropy per unfrozen mole-
cule, multiplied by the molecular thickness of the interdo-
main boundary, which I guess is independent of the size of
the domains.

Equation (7) implies that the excess configurational
entropy vanishes linearly in T at the Kauzmann tempera-
ture TK, and that TK � T0. The combination of Eqs. (5) and
(7) yields

 

�G	�T�
kBT

�
��0s0

sc�T�
; (8)

which is the Adam-Gibbs formula. [9]
Definitions of the glass temperature Tg generally have

the form �G	�Tg�=kBTg � �g, where �g is a number of
order 30, chosen roughly to represent the observable limits
of long relaxation times or high viscosities. Then, because
�G	�Tg� diverges near T0, Tg � T0, the fragility m is [10]

 m � �T
@
@T

�
�G	�T�
kBT

�
T�Tg

/
��2

g

�0

� Tg
�0Tint

�
1=2
: (9)

Returning to the thermodynamic formula, Eq. (7), we find
that the jump in the specific heat at Tg � T0 is

 �cp �
�
T
@sc
@T

�
T�T0

�
6s0�0m

�2
g

: (10)

Here we recover the conjectured proportionality between
�cp and m, but with two material-specific parameters that
might account for the observed scatter in the experimental
data. s0 should scale with the ‘‘bead’’ number of the
molecules, which ordinarily is factored out in obtaining
the linear relation in Eq. (10) [11]. Because it is basically a
geometrical quantity, �0 may be roughly a constant, of
order unity. This analysis also implies that R	�Tg� �
3�g=��0. Thus the critical length scale R	 at the glass
temperature is predicted to be independent of the fragility,
in qualitative agreement with results shown by Berthier
et al. [12]; but those authors report a substantially smaller
length scale.

The droplet-model analogy suggests that some kind of
transformation is occurring at T0, but it is not clear whether
this is a true phase transition or, if so, what kind of
transition it might be. Dissociation of a vacancy-interstitial
pair does not nucleate a qualitatively new state of the whole
system, as does the appearance of a critically large droplet
in a supersaturated vapor; it is simply a mechanism by
which the glass takes steps in exploring its configuration
space and thus starts to behave like a liquid. As discussed
in [1], there is a super-Arrhenius range of temperatures,
T0 < T < TA, within which the excitation-chain mecha-
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nism is operative and the � relaxation time has approxi-
mately the Vogel-Fulcher temperature dependence. TA is
the temperature at which N	 and R	 become small, i.e.,
where excitation chains are no longer needed to stabilize
density fluctuations. Above TA, relaxation is Arrhenius—
the activation energy is temperature independent—and the
system behaves like an ordinary, unjammed liquid, albeit
like one where molecular rearrangements still must over-
come activation barriers. The transition from the glass to
the liquid occurs continuously across the super-Arrhenius
region, with no latent heat, nor any change in symmetry.

The excitation-chain picture does not require that T0 or
TA be sharply defined temperatures. The divergence of
�G	�T� at T � T0 in Eq. (5) may be an artifact of the
approximations made in deriving Eq. (3). (See [1] for a
discussion of the uncertainties at low T and large N, where
the discreteness of the glassy molecular structure must
become increasingly relevant). The actual relaxation rates
may remain finite but unobservably small down to T � 0,
in which case there would be no thermodynamic phase
transition at all. In principle, ergodicity would be restored
at all temperatures, but thermodynamic equilibrium well
below Tg would be experimentally inaccessible. Such a
possibility would be consistent with the recent results of
Donev et al. [13], who find that a binary mixture of hard
disks cannot exhibit a transition to an ideal glassy state of
zero entropy, although that system does behave in a glass-
like manner at sufficiently high densities.

Similarly, we know that the large-N approximations
used in Eqs. (2) and (3) are invalid for small N and cannot
produce the smooth transition between super-Arrhenius
and Arrhenius behaviors that is seen experimentally at
TA. In all likelihood, TA has no special thermodynamic
significance, although it does mark the approximate upper
bound of the temperature range in which heterogeneities
on the scale R	�T� are present.

The spatial and temporal heterogeneities implied by this
theoretical picture make it likely that a closer look at
relaxation processes will reveal stretched-exponential de-
cays of correlations. A detailed discussion of this topic is
beyond the scope of the present report, but one illustration
may be useful. (The following analysis has some features
in common with the trapping models that have been dis-
cussed, for example, in Refs. [14–16].) For T just above
T0, any individual molecule spends most of its time im-
mobilized within a frozen domain. Occasionally, a bound-
ary region wanders through its position and allows it to
diffuse a substantial distance before being frozen again. If
the molecule is frozen in a domain of size R, the probabil-
ity of its remaining in place for a time t (in units of ��) is

proportional to exp��t=R2�. Then, if the distribution of
domain sizes is Gaussian with a width R	,
 exp���R=R	�2�, the most likely value of R scales like
t1=4, and the relaxation function becomes exp��2t1=2=R	�.
If this crude estimate is valid, the limiting value of the
stretching exponent would be 1=2. As T increases toward
TA, the domain size decreases and the exponent must return
to unity in a smooth way that—like other features of the
transition between super-Arrhenius and Arrhenius behav-
ior—remains to be determined in this theory.

In summary, I believe that the excitation-chain hypothe-
sis may provide a framework—but not yet more than a
framework—for constructing a theory of the glass transi-
tion based on realistic molecular models. Outstanding
challenges include improved estimates of activation rates
for both long and short chains, a systematic statistical
mechanical derivation of the entropy formula in Eq. (7),
and an analysis of how and where stretched-exponential
relaxation might emerge from this model.
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