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The phase of gallium GaII, with symmetry C2221 and 104 atoms per unit cell, has been recently
reported as an example of structural complexity under high pressure. It is shown here that this phase is a
simple modulated distortion of an average structure of Fddd symmetry with all atoms structurally
equivalent. The modulation can be described with only 4 parameters and satisfies symmetry properties
described by a centrosymmetric superspace group. The structural distortion is dominated by a frozen
transversal mode associated with a single irreducible representation of Fddd, with a wave vector on the
line Q, at an edge of the Brillouin zone. The average structure can be related with an hcp configuration
through simple sliding of hcp layers, reminiscent of the hcp-bcc Bürgers mechanism.
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High-pressure diffraction experiments have recently re-
vealed a new class of apparently complex phases in rubid-
ium (RbIII) [1], cesium (CsIII) [2], and gallium (GaII) [3].
They all display the same C2221 symmetry and have,
respectively, 52, 84, and 104 atoms in their conventional
orthorhombic unit cell. The structures have been described
as sequences of 8- and 10-atom xy layers stacked along the
c axis [1–3]. Since the alkali elements Rb and Cs and the
group-III element Ga have very different electronic con-
figurations and valence, a general Hume-Rothery-type
mechanism has been proposed as a unifying physical ex-
planation for these phases with the bcc as reference struc-
ture [3,4]. On the other hand, a theoretical analysis of the
structural mechanisms taking place at the high-pressure
phase transitions of alkali metals [5] have shown that a
better understanding of the displacive mechanism relating
RbIII and CsIII to their neighboring structures, could be
obtained by considering these structures as built of four
buckled layers stacked along the b axis, each layer con-
taining 13 atoms for RbIII, and 21 atoms for CsIII. In the
present work we deepen on this alternative description for
the particular case of GaII. We show that it yields a simple
interpretation of the reported structure in terms of a dis-
placive quasisinusoidal distortion of a simple average
parent orthorhombic structure with a single symmetry-
independent atom. The symmetry analysis of this modula-
tion suggests that phase GaII could be related by a Peierls-
like mechanism with the identified average parent
structure.

The 104 atoms of the unit cell of GaII distribute into four
layers, of 26 atoms each, around y � 0, 1=4, 1=2, and 3=4.
The two layers at y � 1=2 and 3=4 are trivially related with
the first two by the C centring. On the other hand, no space
group operation relates the two atomic layers at y � 0
(layer 1) and 1=4 (layer 2). This means that the rotational
symmetry in the structure only connects atomic positions

within the same layer. The similarity of the two layers is
however remarkable. The projections on the plane xz of the
two layers are shown in Fig. 1. In each layer two rows of 13
atoms can be distinguished with an approximate periodic-
ity of c=13 along the c axis and a strong modulation along
the a axis. It is immediate to obtain for each row of atoms

FIG. 1 (color online). xz projection of layer 1 (a), layer 2 (b),
and both layers for the average structure (c).
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an average atomic position within a small unit cell having
the same a and b parameters and caver � c=13. In the
following this average unit cell is the reference basis
used, if nothing on the contrary is indicated. The eight
average atomic positions corresponding to eight 13-atom
rows present in the C2221 unit cell are (3=4, 0, 0), (1=4, 0,
1=2), (0, 1=4, 3=4), (1=2, 1=4, 1=4), plus those related by
the C centring. These positions describe a structure with
Fddd symmetry in a nonconventional setting having the
inversion center at (1=8, 1=8, 1=8) and the y and �x axes
interchanged. Its generators (besides the F centring trans-
lations) are f2xj0; 0; 0g, f2yj 12 ; 0; 0g, and f�1j 1

4 ;
1
4 ;

1
4g. A

single Wyckoff position 8a is occupied, all atoms being
structurally equivalent. The average structure can be de-
scribed as a set of two identical pseudohexagonal mona-
tomic layers shifted by (1=4, 1=4, 3=4) plus the C
translated ones. Taking this average structure as a refer-
ence, the atomic displacements in each of the 13 basic cells
contained in the actual C2221 structure can be described by
a modulation function with a single modulation wave
vector along the z axis.

The description of modulated structures (both commen-
surate and incommensurate) and their symmetry is the
subject of the so-called superspace formalism (see [6]
and references therein). For the purpose of this communi-
cation, we will limit ourselves to the most basic concepts of
this approach. Once an average structure has been defined,
the displacement, ~uj � ~rj � ~roj of any atom at a position ~rj
with respect to its average reference ~roj � ~rbj � ~l (~l being a
vector of the average lattice and ~rbj the average position
within a unit cell) can be interpreted as the value of a vector
function ~uj�x4�, with period 1 associated to atom j of the
average structure, particularized at the point x4 � ~q:~roj
(mod. 1), ~q being the modulation wave vector. The pa-
rameter x4 considered as a continuous variable is the so-
called internal coordinate corresponding to the fourth di-
mension in the superspace formalism. In general, for a
commensurate structure, as the case here, only a finite set
of values of x4 are to be considered. A modulated descrip-
tion makes then sense if the resulting extrapolated continu-
ous modulation functions are smooth and simple, indi-
cating some physical correlations of the atomic positions
not described by the conventional space group. The modu-
lation wave vector, when referred to the reciprocal cell of
the average structure, must be of the form ~q � n

13 ~c
�
aver with

n an integer. If a modulated description is reasonable and
has a physical basis, the modulation will be dominated by
the first harmonics of a particular choice of ~q. For ~q �
9

13 ~c
�
aver the modulation functions become indeed not only

very simple, but have simple interrelations, as shown in
Fig. 2. The atomic displacements along x of the row of 13
atoms in layer 1 associated with the average position (3=4,
0, 0) follow a simple pattern fitted with a function only
containing a first and a third harmonic limited to cosine
functions. The symmetry of the function with respect to

x � 0 and 1=2 is forced by the C2221 symmetry, but the
simple smooth modulation describing the seven crystallo-
graphically independent points between x4 � 0 and 1=2
(black points) is a signature of the relevance of a single
modulation wave vector. Furthermore, only odd harmonics
are significant. Similarly, the modulation function for the y
displacements can be described by a first harmonic of sinus
type, while the zmodulation by a second harmonic, also of
sinus type. Figure 2 also shows that the row of atoms in
layer 2 with average position (1=2, 1=4, 1=4) and indicated
by gray points follows exactly the same modulation func-
tions, despite being space group independent from those in
layer 1. It should be noted that consecutive points along x4

in the previous Figures do not correspond to consecutive
atoms along z in direct space. Hence, the simple underlying
sinusoidal modulations are not evident in real space. The
apparent larger point dispersion in Fig. 2(c) is due to the
different scale of the figure. The displacement amplitudes

FIG. 2. Atomic displacements in relative units (a � 5:976 �A,
b � 8:576 �A, c � 35:758 �A) along the x (a), y (b), and z (c) axis
for the row of atoms at layer 1 with hxi � 3=4 (black points) and
the row of atoms in layer 2 with hxi � 1=2 ( gray points), as a
function of the phase x4, with ~q � 9

13 ~c
�
aver. The fitted functions

are of the form: ux�x4� � A cos2�x4 � B cos6�x4, uy�x4� �

A sin2�x4, and uz�x4� � A sin4�x4.
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along z are about 5 times smaller than in the other two
directions. For the second rows of atoms in both layers 1
and 2, a similar set of modulation functions can be ob-
tained. As these atoms are related with those considered
above by the C2221 operations, they do not contain any
additional independent structural parameter and their
modulation functions are related with those described
above. The set of the eight atomic modulation functions
constructed in the way described above constitutes the
structural modulation which relates the Fddd average
structure with the experimental 104-atom C2221 structure.
The symmetry constraints on the observed atomic modu-
lations and the relations connecting them are uniquely
described by a superspace group [6]. This superspace
group can be labeled as Fddd�00��0s0 with � � 9=13;
its generators are listed in Table I. It corresponds to
N. 70.2. in the list of [6], given here in a nonconventional
setting. The reported C2221 structure could also be de-
scribed with the same modulation functions within lower
superspace symmetries. However, in that case, the clear
identity between the atomic modulations in layers 1 and 2
and the limitation of the x-component modulation to odd
Fourier terms, would remain without any explanation.

The use of the superspace formalism in the case of
commensurate modulated structures is nowadays a wide-
spread technique and has demonstrated to be extremely
efficient for interpreting all kind of superstructures [6–12].
According to the discussion above, the structure of GaII
can be described with only 4 structural parameters, to be
compared with the 38 parameters used in Ref. [3]. To our
knowledge, this is one of the most extreme examples of the
power of the superspace approach for describing a long
period commensurate structure. The 3D conventional
space group realized in a commensurate modulated struc-
ture depends on the value of the wave vector and on the
global phase of the modulation [6,7]. The possible 3D
space groups resulting from the superspace group
Fddd�00��0s0 are listed in Table I. According to this
table, the system would have a centrosymmetric space
group C1121=d (P21=c in conventional setting), just by
shifting the modulation phase along x4 a value of 1=104. It
is well known that long period commensurate modulated
structures with very few harmonics in the modulation have
diffraction patterns very weakly dependent on the modu-
lation global phase [7], and therefore any of the space
groups described by the same superspace group can be
equally efficient for describing the experimental diffrac-

tion pattern. In other words, even if apparently commen-
surate, the experimental data can be equally well fitted for
any value of the global phase of the modulation, and in
practice the system can be considered incommensurate,
with a ‘‘phason’’ degree of freedom proper of incommen-
surate structures [6,7]. In such situations the assignment of
a 3D conventional space group becomes ambiguous. We
could not have access to the experimental diffraction data
set of [3], so we could not check directly if this is the case
in GaII. We could, however, confirm its plausibility using
an artificial dataset of intensities calculated from the pub-
lished C2221 structural model. The number of reflections
and the limit of the modulus of their diffraction vectors
were chosen in accordance with the experimental details of
[3]. Using the program JANA [11] the fits of this data set
with a global phase t � 0 (symmetry C2221) and t �
1=104 (symmetry C1121=d) were both excellent with
equal agreement factors. Furthermore, even making a re-
finement in the ‘‘incommensurate mode’’, which means to
use a structure factor formula proper of an incommensurate
modulation vector, the agreement factor did not change
significantly. This test suggests that GaII may be in prac-
tice an incommensurate modulated structure with a modu-
lation vector approximately (0, 0, 9=13) but no clear lock-
in into this commensurate value.

The above description of GaII lets emerge a hidden
simplicity of the underlying physics, quite different from
the mechanism proposed previously [3,4], where the bcc
structure was used as reference. GaII can be considered the
result of the stabilization of a Fddd eight-atom structure
through the additional freezing of a distorting mode of
transversal character with wave vector ~q � �0; 0; 9=13� at
the symmetry line � (out of the first Brillouin zone). An
equivalent wave vector is (1, 1, 4=13), lying along the
symmetry line Q on a Brillouin zone edge [13,14]. The
observed superspace group defines the transformation
properties of this mode and they correspond to a single
irreducible representation of Fddd, namely Q3 in the
notation of [15]. This frozen primary mode includes simi-
lar amplitudes for the x and y components but �=2 shifted,
so that a helicoidal distortion along z results. A strong
second mode, polarized along x, with wave vector 3 ~q and
the same symmetry, significantly corrects that primary
distortion. A remarkable feature of the transversal modu-
lation is its large amplitude, with values of the order of
0.5 Å. The quasisinusoidal character of the modulation
despite such large amplitudes suggests that the stabiliza-

TABLE I. List of generators of the Fddd�00��0s0 superspace group and resulting 3D groups for rational ~q � r
s ~c
�
aver modulation

wave vectors and t global phase.

Generators: fmxj
1
4 ;

1
4 ;

1
4 ; 0g fmyj

1
4 ;

1
4 ;

3
4 ;

1
2g fmzj

1
4 ;

1
4 ;

3
4 ;

1
2g

r � 4N t � 0�mod: 1
2s� F2=d11 t � 1

4 �mod: 1
2s� Fd2d t � arbitrary Fd11

r � 4N � 2 t � 0�mod: 1
2s� F2dd t � 1

4 �mod: 1
2s� F12=d1 t � arbitrary F1d1

r � odd t � 0�mod: 1
4s� C2221 t � 1

8s �mod: 1
4s� C1121=d t � arbitrary C1121
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tion of the distortion is achieved through some Peierls-like
mechanism and Fermi surface nesting properties.

It is also interesting that the average Fddd structure of
GaII [see Fig. 1(c)] can be related with the hcp structure by
means of a simple sliding of the hcp layers as in the so-
called Bürger’s mechanism for the hcp-bcc transformation.
The direction of the sliding is however different and in-
volves a set of four consecutive layers. Pairs of consecutive
layers have relative shifts given by �1=6; 1=12; 0�hcp, while
each of these pairs of layers is shifted with respect to its
consecutive one by �1=2; 0; 0�hcp. Figure 3 shows how the
relative sliding of two hcp consecutive layers along the
direction �2; 1; 0�hcp produces the configuration of the
Fddd average structure. The same Fddd configuration
detected here for GaII as average structure, has also been
observed, but as exact symmetry, in some specific ele-
ments, namely, Pu [16], Am [17] and Cm [18], where the
layers are also pseudohexagonal.

Although having the same orthorhombic space group,
the structure of GaII is quite different from those reported
for CsIII [1] and RbIII [2]. These two phases have also a
large number of atoms per conventional unit cell (84 and
52, respectively), and they can also be divided into 4 layers
stacked along the y axis [5]. But their average y coordi-
nates are 1=8, 3=8, 5=8 and 7=8. This means a rather
different situation, with the two layers being symmetry
related within the space group C2221, in contrast with
the case of GaII. Indeed, phases CsIII and RbIII can also
be interpreted as modulated structures, but of composite
character. Layers at y � 1=8 and 3=8 form two subsystems
with different average structures that modulate each other.
The two subsystems are monoclinic with monoatomic
lattices and are related by symmetry operations of an

orthorhombic superspace group. The modulations are
also in this case smooth, simple, and describable by a
few parameters. Their amplitudes are much smaller than
in GaII. Phases CsIII and RbIII can be considered very
peculiar examples of commensurate composites with sym-
metry interrelated subsystems. A detailed study of these
two phases from this perspective will be presented else-
where. In conclusion, the large unit cell phases GaII, RbIII,
and CsIII are far from being examples of structural com-
plexity in the sense initially assumed.
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FIG. 3 (color online). (a) Scheme of two consecutive hexago-
nal layers of the hcp structure, indicating the sliding direction
which yields the Fddd average structure of GaII. (b) Scheme of
the configuration observed for the first two layers of the Fddd
average structure of GaII, idealized with the hexagonal metrics.
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