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The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been
recently analyzed. In this Letter we propose an elastic realization of these ladders, employing for this
purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have
measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the
quantum-mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather
well with theoretically predicted amplitudes. The rods we analyze can be used to localize different
frequencies in different parts of the elastic systems and vice versa.
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Recently, undulatory systems showing analogues of
Bloch oscillations and Wannier-Stark ladders (WSL) at-
tracted increasing attention in several fields of physics [1–
5]. As shown by Bloch, electrons in a periodic potential
have extended solutions. The same is true for the behavior
of an electron under the action of a static electric field. In
contrast, and opposite to intuition, when both the periodic
potential and the electric field are present, the solutions are
localized; this is only true when band to band Zener
tunneling is negligible or the system is short enough. The
spectrum then shows equally spaced resonances known as
Wannier-Stark ladders, the nearest-neighbor level spacing
being proportional to the intensity of the external field [6].
In the time domain, the Wannier-Stark ladders yield the so-
called Bloch oscillations which consist of a counterintui-
tive effect where the electrons show an oscillatory move-
ment under the action of the static external electric field
[7,8].

The predictions by Bloch and Wannier gave rise to a
long controversy that lasted more than 60 years for the
Bloch oscillations [9], and more than 20 years for the WSL
[10–12]. The ladders were observed before Bloch oscilla-
tions. This was done first in numerical experiments using
simple one-dimensional models [13] and later in the labo-
ratory [14]. Bloch oscillations were also observed later on
[15]. The most important ingredient to explain WSL is the
wavelike behavior of the electrons. Therefore, these lad-
ders could also be observed in classical undulatory sys-
tems. Some of these classical systems have been analyzed
theoretically [16–18].

In this Letter we study special elastic rods whose tor-
sional waves for free ends present some analogies to the
WSL. The first system, depicted in Fig. 1(a) and which will
be referred to as system A, consists of a set of N circular
cylinders of radius R and varying length ln, n �
1; 2; . . . ; N, separated by very small cylinders of length
�� ln and radius r < R� ln. This is the elastic analogue
of the optical system with varying widths used in Ref. [1].
System B, shown in Fig. 1(b), is a beam formed by N

cuboids of constant width w and length l. They have differ-
ent heights hn, for n � 1; 2; . . . ; N, with w, hn � l. These
cuboids are separated by small cuboids of dimensions h0 �
w0, �0 � l. This is the elastic analogue of the optical
systems with a gradient of the refractive index along the
direction of propagation used in Refs. [2–4], as we shall
see below. Systems A and B were constructed by machin-
ing a solid aluminum piece.

We first discuss the design of these systems and then,
from a qualitative point of view, the normal-mode frequen-
cies and wave amplitudes for torsional vibrations. We later
use the transfer-matrix method and obtain the normal-
mode properties, which will be compared to experimental
measurements.

In order to design systems A and B we start with what
could be called an independent rod model in which each
body oscillates independently from the rest. The normal-
mode torsional frequencies f�n�j of rod n with length ln and
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FIG. 1. Rods used to obtain the Wannier-Stark ladders: (a) rod
with varying length cells and (b) beam with equal-length cells
but different heights. For system A, ln � l=�1� n��, n �
1; . . . ; 14, with l � 10:8 cm, � � 0:091, � � 2:52 mm, and����������
G=�

p
� 3104:7 m=s. The radii of the small and big cylinders

are r � 2:415 mm and R � 6:425 mm, respectively. In system
B, l � 5:0 cm, w � 1:905 cm, and cn � c�1� n��, n �
1; . . . ; 15 with c � 2027:3 m=s and � � 0:02786. The width,
height, and length of the small cuboids are w0 � 5:0 mm, h0 �
5:0 mm, and �0 � 6:0 mm, respectively.
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wave velocity cn are given by the well-known expression
[19]

 f�n�j �
cn
2ln

j; (1)

where j is the number of nodes in the wave amplitude. To
get a set of equidistant frequencies we consider two op-
tions: either the lengths ln are varied with a fixed wave
velocity or the lengths are kept constant and the wave
velocity is changed. For system A we take circular rods
with ln � l=�1� n��, n � 1; . . . ; N and cn � �G=��1=2

were � is the density, G the shear modulus, and l a fixed
arbitrary length. Notice that, in circular rods, the velocity
does not depend on the radius [19]. For system B we take
ln � l and cn � c�1� n��, c being an arbitrary constant
velocity. The parameter � is dimensionless.

To construct system B we use the Navier expression for
the torsional velocity of cuboid n:

 cn �

����������
G�n
�In

s
; (2)

where In � �hnw3 � h3
nw�=12 is the moment of inertia

with respect to the axis of the system and �n is given by

 �n �
256

�6

X1
m�0

X1
p�0

1

�2m� 1�2�2p� 1�2

�
hnw

��2m� 1�=hn�2 � ��2p� 1�=w�2
: (3)

For beams of varying hn we have verified Eqs. (2) and (3)
experimentally. Solving these equations we have obtained
the values of hn such that cn � c�1� n��.

Then

 f�n�j �
� ����������
G=�

p
�1� n��j=2l for system A

c�1� n��j=2l for system B;
(4)

and the differences �f�n�j � f�n�1�
j 	 f�n�j are equal to

 �j 
 �f�n�j �
� ����������
G=�

p
�j=2l for system A

c�j=2l for system B;
(5)

which are independent of index n.
We shall now discuss system A. When the arbitrary

parameter � is set equal to zero, a locally periodic rod is
formed. This locally periodic rod shows a band spectrum
[20]. When � � 0 a completely different spectrum occurs.
The new spectrum then resembles the Wannier-Stark
ladder.

Before presenting the calculation of the normal modes
for this system, and then showing numerical and experi-
mental results, let us make a qualitative analysis to see
what type of spectrum could be expected from the inde-
pendent rod model. At the lowest frequencies, the wave-
length � is of the same order of magnitude as L �

PN
n�1 ln,

and the whole rod is excited. But when � decreases and

becomes of the order of l1 � l=�1� ��, the longest rod,
say rod 1, is excited in a state equivalent to its lowest
normal mode. The rest of the N rods are out of resonance,
so the amplitude decreases as we move farther away from
rod 1. Therefore, the state is localized around the latter. In
some sense this was to be expected since we are disturbing
a periodic structure to obtain a disordered one-dimensional
system, which always shows localized wave amplitudes.
Increasing the exciting frequency by �1 the rod with length
l2 � l=�1� 2��, that is, rod 2, will now be excited and the
rest will be out of resonance. The amplitudes of the vibra-
tions therefore decrease as their distance from rod 2 in-
creases. The wave amplitude is again localized but now
around rod 2; it has a similar shape as the wave amplitude
that rod 1 had before, but it has been slightly deformed,
squeezed, and translated from rod 1 to rod 2. The same
argument applies when rod n of length ln � l=�1� n�� is
excited.

What we have done is to produce a finite WSL, i.e., N
localized states with constant difference in frequency given
by Eq. (5). However, more ladders exist since normal
modes with two or more nodes can also be excited in
each rod. For instance, taking j � 2 in Eq. (4) a second
ladder is obtained. This ladder is different from the first one
because the frequency difference is now twice the one of
the lower WSL, as can be seen from Eq. (5). The states are
again localized and all have a similar shape although
squeezed. A third ladder exists with �3 � 3�1 and so on
for other values of j. A similar argument for system B
shows also the existence of several WSL. The difference
between the quantum-mechanical and elastic ladders is
that in the latter the spacing between resonances is not
the same for different ladders.

We have calculated the eigenmode properties of the rods
of Figs. 1(a) and 1(b) with free-end boundary conditions
using the transfer-matrix method for torsional waves dis-
cussed in Ref. [20]. The normal-mode frequencies and
amplitudes were measured using the experimental setup
described in Fig. 2. We use an electromagnetic acoustic
transducer (EMAT) which is very versatile and operates at
low frequencies. This EMAT, which we have recently
developed [21], can selectively excite or detect compres-
sional, torsional, or flexural vibrations. In the inset of Fig. 2
the EMAT has been installed to detect torsional vibrations;
see Ref. [20].

We show in Fig. 3 the spectrum of system A as a function
of the dimensionless parameter �. As mentioned above, for
� � 0 a band spectrum appears, and as � grows the levels
of each band separate to form the WSL. The normal-mode
frequencies of the rod shown in Fig. 1(a) are given in Fig. 4
for � � 0:091. We first note that the theoretical results co-
incide very well with the experimental ones. Furthermore,
the qualitative treatment provides a rather good first ap-
proximation. One can see from this figure that the states
form a set of Wannier-Stark ladders, as discussed before.
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The first band composed by the extended modes is not
displayed in this graph. Notice that the frequencies in the
extremes of each ladder do not have the same difference in
frequency as those at the middle of the ladder. This is due
to a border effect in the wave amplitudes localized near the
free ends. As shown in the insets of Fig. 4 the border
amplitude lacks a portion of the wave amplitude that the
states at the center of the ladder have.

In Fig. 5 we show the comparison of theoretical and
experimental wave amplitudes. These are localized around
rod n. For example, in Fig. 5(a) the sixth rod resonates and
in Fig. 5(b) another state corresponding to the same ladder
is localized around the tenth rod. Both have the same form
although squeezed. Figs. 5(c) and 5(d) show two states of
the second ladder, with n � 6 and n � 11, respectively.
Localization is again observed and, as was to be expected,
the amplitudes now show two nodes in the resonating rods.
Note the excellent agreement between theory and experi-

ment after adjusting the height of the theoretical wave
amplitude at only one point.

As mentioned above, system B shows similar properties.
We present in Fig. 6, as an example, two wave amplitudes
for the first WSL of system B. In contrast with system A,
these wave amplitudes have the same shape but translated
and are not squeezed. Notice that the one-dimensional
transfer-matrix method fit the experimental wave ampli-

FIG. 3. Normal-mode frequencies of system A as a function of
the dimensionless parameter �.
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FIG. 4 (color online). Normal-mode frequencies of system A
yielding the elastic Wannier-Stark effect. For each value of j the
left-hand side column corresponds to the experimental values,
the middle column to the numerical results obtained using the
transfer-matrix method, and the right-hand side shows the ap-
proximate results following from the independent rod model. In
the calculation we used an effective value for r=R [20]. The
uncertainty in the experimental values is less than 0.01%. In the
insets the theoretical wave amplitudes are given for a state at the
extreme of the ladder and another one in the center of it.
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FIG. 5 (color online). Wave amplitudes of system A for 19
nodes (a), 23 nodes (b), 33 nodes (c), and 41 nodes (d). The
continuous line corresponds to the transfer-matrix results and the
dots to the measurements. The vertical lines along the rod axis
indicate the position of the notches.
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FIG. 2 (color online). Block diagram of the experimental
setup. For system A both detector and exciter are EMATs, while
for system B the exciter was a piezoelectric transducer.
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tudes in spite of the fact that w and hn are not much smaller
than l.

To conclude, we have constructed an elastic analogue of
Wannier-Stark ladders. In contrast with the optical ana-
logue of Refs. [1– 4] we have observed the WSL directly.
Furthermore, we measured for the first time the wave
amplitudes, including phases, which show localization.
We also observed higher Wannier-Stark ladders. The elas-
tic Wannier-Stark ladders have potential applications in the
design of systems with localized vibrations.
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Nacional Autónoma de México, P.O. Box 20-364, 01000
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FIG. 6 (color online). Two wave amplitudes of system B;
(a) one localized on the third rod with frequency f �
44:256 kHz and (b) other localized on the tenth rod with fre-
quency f � 51:258 kHz. The double vertical lines along the
beam axis indicate the position of the notches.
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