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A new type of intermittent behavior is described to occur near the boundary of the phase synchroni-
zation regime of coupled chaotic oscillators. This mechanism, called ring intermittency, arises for
sufficiently high initial mismatches in the frequencies of the two coupled systems. The laws for both
the distribution and the mean length of the laminar phases versus the coupling strength are analytically
deduced. Very good agreement between the theoretical results and the numerically calculated data is
shown. We discuss how this mechanism is expected to take place in other relevant physical circumstances.
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Intermittent behavior is a ubiquitous phenomenon in
nonlinear science. Its arousal and main statistical proper-
ties have been studied and characterized for a long time,
and different types of intermittency have been classified as
types I–III [1,2] or on-off intermittency [3,4]. One of the
most general and interesting manifestations of intermittent
behavior can be observed near the boundary of chaotic
synchronization regimes. Indeed, close to the threshold
parameter values for which the coupled systems show
synchronized dynamics, it is observed that the desynchro-
nization mechanism involves persistent intermittent time
intervals during which the synchronized oscillations are
interrupted by the nonsynchronous behavior. These pre-
transitional intermittencies have been described in detail
for the case of lag synchronization [5–7] and for general-
ized synchronization [8], and their main statistical proper-
ties (following those of the on-off intermittency) have been
shown to be common to other relevant physical processes.

As far as intermittency phenomena near the phase syn-
chronization onset are concerned, two types of intermittent
behavior have been observed so far [9–12], namely, type-I
intermittency and the superlong laminar behavior (so-
called ‘‘eyelet intermittency’’ [13]).

In this Letter, we report that a new type of intermittent
behavior is observed near the phase synchronization
boundary of two unidirectionally coupled chaotic oscilla-
tors, when the natural frequencies of the two oscillators are
sufficiently different from one another. The system under
study is represented by a pair of unidirectionally coupled
Rössler systems, whose equations read as
 

_xd � �!dyd � zd; _xr � �!ryr � zr � "�xd � xr�;

_yd � !dxd � ayd; _yr � !rxr � ayr;

_zd � p� zd�xd � c�; _zr � p� zr�xr � c�;
(1)

where �xd; yd; zd� [�xr; yr; zr�] are the Cartesian coordinates
of the drive (response) oscillator, dots stand for temporal
derivatives, and " is a parameter ruling the coupling
strength. The other control parameters of Eq. (1) have

been set to a � 0:15, p � 0:2, c � 10:0, in analogy with
previous studies [14,15]. The !r parameter (representing
the natural frequency of the response system) has been
selected to be !r � 0:95; the analogous parameter for the
drive system has been fixed to !d � 1:0. For such a choice
of parameter values, both chaotic attractors of the drive and
response systems are, at zero coupling strength, phase
coherent. Furthermore, the boundary of the phase synchro-
nization regime occurs around "c � 0:124.

The instantaneous phase of the chaotic signals ’�t� can,
therefore, be introduced in the traditional way, as the
rotation angle ’d;r � arctan�yd;r=xd;r� on the projection
plane �x; y� of each system. The presence of the phase
synchronization regime can be detected by means of moni-
toring the time evolution of the instantaneous phase dif-
ference, which has to obey the phase locking condition [16]

 j�’�t�j � j’d�t� � ’r�t�j< const: (2)

Below the boundary of the phase synchronization regime,
the dynamics of the phase difference �’�t� features time
intervals of phase synchronized motion (laminar phases)
persistently and intermittently interrupted by sudden phase
slips (turbulent phases) during which the value of j�’�t�j
jumps up by 2�.

By analyzing the statistics of the laminar phases, it is
found that the intermittent type behavior described in
Refs. [9–13] takes place only for small differences in the
natural frequencies of the drive and response systems. In
particular, the eyelet intermittent phenomenon occurs in
the range !d � 0:90–0:98. As far as large differences in
the natural frequencies of the drive and response systems
are concerned (!d < 0:90 and !d > 0:98), a novel type of
intermittent behavior emerges which differs remarkably
from the ones known so far. In the following, we will
describe the properties of this new type of behavior, that
we called ring intermittency, due to the specific dynamical
mechanism that produces it.

Let us start with discussing the mechanism at the origin
of the arousal of the ring intermittency, and that rules out
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the scaling laws characterizing this phenomenon. It is well
known that there are two different scenarios for synchro-
nization destruction in a periodic oscillator driven by an
external force, corresponding, respectively, to small and
large detunings with the external signal frequency (see,
e.g., the tutorial in Ref. [17]). Under certain conditions
(i.e., for the periodically forced weakly nonlinear isochro-
nous oscillator), the complex amplitude method may be
used to find the solution describing the oscillator behavior
in the form u�t� � Rea�t�ei!t. For the complex amplitude
a�t�, one obtains averaged (truncated) equations _a �
�i�a� a� jaj2a� ik, where � is the frequency mis-
match, and k is the (renormalized) amplitude of the exter-
nal force. For small � and large k, the stable solution
a�t� � Aei� � const corresponds to the synchronous re-
gime, with the synchronization destruction corresponding
to the saddle-node bifurcation on the plane of the complex
amplitude. For large frequency mismatches, with the de-
crease of the k value, the fixed point (stable node) on the
complex amplitude plane becomes sequentially a stable
focus and an unstable focus (via the Andronov-Hopf bi-
furcation). In this case, the phase synchronization destruc-
tion is connected with the limit cycle location on the
complex amplitude plane (see [17] for details). When the
limit cycle starts enveloping the origin, the synchronization
regime begins to destroy. Obviously, if one considers the
behavior of the synchronized periodic oscillator on the
plane �x0; y0� rotating with the frequency of the external
signal around the origin, he observes the stable node for the
small values of the frequency detuning and a cycle for the
large ones, respectively. These considerations on the rotat-
ing plane may be made apparent by using the coordinate
transformation x0 �xrcos’d�yr sin’d, y0 ��xr sin’d�
yr cos’d, where ’d � ’d�t� is the instantaneous phase of
the drive system.

The same effects may also be observed for chaotic
oscillators. Indeed, in Fig. 1(a), the behavior of the syn-
chronized response oscillator (1) is shown on the plane
�x0; y0� rotating around the origin in accordance with the
phase ’d�t� of the drive system when the control parame-
ters !d and !r are detuned sufficiently. One can see that
the phase trajectory on this plane looks like a ring. This
effect arises insofar as the Rössler system may be consid-
ered as a noise smeared periodic oscillator (see, e.g., [18]).
Therefore, one observes the ring consisting of the phase
trajectories, instead of the limit cycle that would occur in
the periodic case. It is the case of the large control parame-
ter mismatch that is accompanied by the ring intermittency
behavior, while for the small parameter detuning the inter-
mittent type-I as well as the eyelet intermittency are re-
vealed. When the coupling strength " gets below the
critical value "c, the phase trajectory on the �x0; y0� plane
starts enveloping the origin [see Fig. 1(b); the origin is the
point of intersection of the dashed lines], and the phase
synchronization regime begins to destroy, as a phase slip is

observed all the times that the phase trajectory envelops the
origin of that plane. As the coupling strength decreases
further, the phase trajectory envelops the origin more often,
and the phase slips occur more frequently. Finally, when
the coupling strength " becomes less than "t � 0:1097, the
origin is inside the ring [see Fig. 1(c)]; therefore, every
rotation of phase trajectory causes a phase slip. So, varying
the coupling strength ", one observes: (i) the phase syn-
chronization regime for " > "c, (ii) the intermittent behav-
ior for "t < " < "c, and (iii) the asynchronous dynamics
for " < "t when the phase slips follow each other at
approximately equal time intervals T, the averaged period
of the phase trajectory rotation on the �x0; y0� plane [see
Fig. 1(d)].

Let the probability that the phase trajectory on the
rotating �x0; y0� plane envelops the origin be p � p�"�.
Obviously, p � 0 if " > "c, p � 1 if " < "t and 0< p<
1 when "t < " < "c.

In the case of the intermittent behavior (i.e., "t < " <
"c), the probability of the laminar phase with length T to be
observed is P�T� � p2. This period is determined by the
difference of the main frequencies of the drive (fd) and
response (fr) systems and may be calculated as T �
1=jfr � fdj. For the control parameter set mentioned
above, we have T � 80. It is clear that the probability of
laminar phases with length nT to arise is P�nT� � �1�
p�n�1p2. So, the distribution of the laminar phases with
generic length � should scale as

 N��� � p2�1� p��=T�1; � > T: (3)

Equation (3) may be also rewritten in the form

 N��� � A exp�k��; � > T; (4)

where k � �1=T� ln�1� p�, A being a normalizing coeffi-
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FIG. 1 (color online). The phase trajectory of the response
system on the �x0; y0� plane rotating around the origin when the
coupling parameter strength is selected as (a) " � 0:126—the
phase synchronization regime, (b) " � 0:115—the ring inter-
mittency, and (c) " � 0:109—the asynchronous dynamics.
(d) The dependence of the phase difference �’�t� on the time
t for the coupling strength values " used in (a)–(c).
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cient. Thus, the laminar phase distribution in the ring
intermittency obeys an exponential law, with the parameter
k being negative due to 0<p< 1.

Let us compare the obtained theoretical law (4) with the
results of the numerical calculations of the intermittent
behavior of two coupled Rössler systems (1). In Fig. 2,
the distribution of the laminar phase lengths are shown for
the different values of the coupling strength ". In the same
figure, we report also the exponential fits obeying the law
(4). The value of the probability p�"� to calculate the
coefficient k may be estimated as follows. If the length
of the time realization under consideration is L (in our
calculations, the length of the analyzed time series was
L � 2� 106 time units) and N phase slips have been
observed during this period, then the probability p�"�
that the phase trajectory on the rotating �x0; y0� plane en-
velops the origin is p � NT=L. For example, when the
coupling strength has been fixed as " � 0:12 (see curve 2
and points � in Fig. 2 for the distribution of the laminar
phase lengths), we have observed N � 7 772 phase slips
during the analyzed time series, and therefore the proba-
bility p�"� was estimated as p � 0:31. From Fig. 2, one
can see excellent agreement of the numerical data with the
theoretical law (4) for the whole range of coupling strength
values "t < " < "c where the ring intermittency takes
place.

Let us now derive the dependence of the mean length h�i
of the laminar phases (i.e., the averaged time interval
between two successive phase slips) on the coupling
strength ". From Eq. (4), one can easily obtain the rela-
tionship between the mean length h��"�i and the probabil-
ity p � p�"�

 h�i � T �
1

k
� T �

T
ln�1� p�

: (5)

We have numerically observed that, in the coupling
strength range "t < " < "c where the ring intermittent
behavior is observed, the value of the probability p is
directly proportional to the deviation of the coupling
strength " from the critical value "c, i.e.,

 p�"� � �"c � "�: (6)

Indeed, in Fig. 3, the dependence of the probability p on
the deviation of the coupling strength from the critical
value ("c � ") is shown. The probability p�"� for each
value of " has been calculated in the same way as was
described above.

Since the probability p on the coupling strength in the
range "t < " < "c relates to the coupling strength as
p�"� � �"c � "�=�"c � "t�, one easily obtains that the de-
pendence of the mean laminar phase length on " has to
scale in the form

 h��"�i � T
�
1� ln�1

�
"� "t
"c � "t

��
: (7)

Notice that Eq. (7) describes scaling properties for the
laminar periods during the ring intermittency that are
completely different from those typical of type-I intermit-
tency characterizing the transition to phase locking of
periodic oscillators in the presence of noise [16], as well
as from those arising from the superlong laminar behavior
(or eyelet intermittency) characterizing pretransitional
stages of slightly mismatched chaotic oscillators [11,13].
Obviously, Eq. (7) is correct only in the coupling strength
range "t < " < "c, whereas (5) may be used both below "t
and above "c. The mean length h�i of the laminar phases is
about T for values of " below the critical value "t (the
asynchronous regime where the phase slips follow one
another at approximately equal time intervals) and is in-
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FIG. 2 (color online). The laminar phase length distributions
for the different values of the coupling strength " and exponen-
tial laws (4) corresponding to them. The theoretical curves are
shown by lines; the data calculated for two coupled Rössler
systems (1) are shown by points. The coupling strength values ",
the probability p, and the parameter of the exponential law k
have been selected as follows: (1) " � 0:123 (	), p � 0:06, k �
�7:7� 10�4; (2) " � 0:12 (�), p � 0:31, k � �4:6� 10�3;
(3) " � 0:115 (�), p � 0:65, k � �1:3� 10�2; (4) " � 0:11
(4), p � 0:96, k � �4:0� 10�2.

εc−ε

0 0.01 0.02

0.2

0.4

0.6

0.8

p

εc εt

FIG. 3 (color online). The dependence of the probability p that
the phase trajectory on the rotating �x0; y0� plane envelops the
origin on the deviation of the coupling strength from the critical
value ("c � "). The points obtained numerically has been shown
by symbols �; the linear approximation p � a�"c � "� (where
a � 70) is shown by a solid line. The critical values "c and "t of
the coupling parameter are shown by arrows. Note that Eq. (6) is
applicable only in the coupling strength range "t < " < "c.
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finity in the case " > "c. Note also that lim"!�"th��"�i �
T and lim"!�"ch��"�i � �1 in perfect agreement with the
system’s behavior at the two boundaries of the intermit-
tency phenomenon ("t; "c).

Finally, in Fig. 4, the dependence of the mean laminar
phase length h�i on the coupling strength " is shown. The
points (�) correspond to the calculated mean lengths of the
laminar phases, and the red solid line 1 reports the theo-
retical Eq. (7). Again, one can see a perfect agreement of
the theoretical curve with the calculated points. Below the
threshold "t, the calculated mean length of the laminar
phases is compared with the asymptotic value h�i � T (red
dashed line). In order to show that our analysis is not
limited to the chaotic system (1), we report in the same
figure the analogous curves (solid dots, blue solid line, blue
dashed line) obtained for the case of two unidirectionally
coupled generators with tunnel diodes described in
Ref. [19], where Eq. (7) is valid in the range "t2 < "<
"c2 ("t2 � 0:083 and "c2 � 0:111). Finally, we would like
to stress that the same intermittent scenario can be ob-
served in system (1) for fixed (large enough) values of
coupling strength, when varying the parameter mismatch.

In conclusion, we have reported for the first time a new
type of intermittency behavior occurring at the onset of
phase synchronization regimes of two unidirectionally
coupled chaotic oscillators with sufficiently detuned natu-
ral frequencies. Such a type of ring intermittency differs
remarkably from all the other types of intermittency known
so far. It may be observed in a certain range of coupling
parameter strengths, where the distribution of the laminar
phase lengths obeys an exponential law. The theoretical
equation for the dependence of the mean length of the

laminar phases on the coupling strength has also been
given and is in perfect agreement with the numerically
obtained data. Though the characterization of the new
intermittent process has been here explicitly derived at
the boundary of phase synchronization of chaotic systems,
we expect that the very same mechanism can be observed
in many other relevant circumstances, such as, e.g., laser
systems [11], or in the case of the interaction between the
main rhythmic processes in the human cardiovascular sys-
tem [20,21].
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[1] P. Bergé, Y. Pomeau, and Ch. Vidal, L’Ordre dans le
Chaos (Hermann, Paris, 1988).

[2] M. Dubois, M. Rubio, and P. Bergé, Phys. Rev. Lett. 51,
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FIG. 4 (color online). The mean length h�i of the laminar
phases vs " calculated numerically (�) for two coupled
Rössler systems (1), the theoretical curve (7) (red solid line 1,
applicable only in the range "t < " < "c shown by arrows), and
the asymptotic (" < "t) value of (5) (red dashed line). The
analogous curves (solid dots, blue solid line, blue dashed line)
refer to the case of two coupled generators with tunnel diodes of
Ref. [19]. In this latter case, arrows point to "t2 � 0:083 and
"c2 � 0:111, delimiting the validity range of Eq. (7).
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