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A single-mode inversionless laser with a three-level phaseonium as an active medium can by itself
exhibit complex nonlinear dynamics. Nonlinear interaction between two spectrally separated gain regions
of the phaseonium and a lasing field gives rise to instabilities and chaotic self-pulsations of a type not
observed in conventional lasers with population-inverted gain media. We calculate the bifurcation diagram
and uncover multistability and a torus-doubling cascade in transition to chaos.
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Nonlinear dynamics of lasers has been intensively
studied since the laser invention in 1960. These studies
provided invaluable insight into the nonlinear light-matter
interaction in a cavity and uncovered phenomena including
chaos, competition, excitability, and synchronization,
found across different fields of science and engineering
[1,2]. In particular, chaotic laser behavior motivated new
technological applications such as secure chaotic commu-
nication and chaotic radars. Until 1989, the general belief
was that lasers require population inversion.

During the last two decades, much attention has been
devoted to the effects of atomic coherence and interference
in a coherently prepared multilevel medium called phaseo-
nium [3]. For the example from Fig. 1, it was found that
phase coherence, or quantum coherence, created between
two levels with a dipole-forbidden transition (b$ c) may
cause unusual optical properties of the dipole-allowed
transitions (a$ b) such as ultrahigh refractive index, van-
ishing absorption, and gain without population inversion.
These discoveries led to phaseonium based lasers, called
phasers [3], that do not require population inversion [4–8].
Owing to the nature of the active medium, phasers have
nonlinearities that are very different from those found in
conventional (population-inverted) lasers, and the resulting
instabilities are not well understood. A further understand-
ing of the phasers’ nonlinear behavior, in particular, their
differences from conventional lasers, is important from a
fundamental viewpoint. The stability of various types of
phaser output including continuous wave (cw), periodic,
quasiperiodic, and chaotic lasing without inversion (LWI),
as well as the possibility to control them, is becoming of
great practical interest.

A single-mode three-level phaser is a paradigm of LWI
[9] and the first step in understanding nonlinear dynamics
of more complicated multimode phasers [10]. Although
phasers show more potential for richer dynamics than
conventional lasers, nonlinear dynamics analyses of LWI
in single-mode, three-level phasers revealed only bista-
bility and periodic self-pulsations [11–13]. These behav-
iors are much simpler than the Lorentz-type chaos reported
in single-mode two- and three-level conventional lasers

[1,14,15]. In particular, no chaotic LWI has yet been
reported in single-mode, three-level phasers.

This Letter shows theoretically that a single-mode,
three-level phaser can exhibit further instabilities and
chaos of the type different than reported to date with lasers
and phasers. We calculated the bifurcation diagram of a
single-mode, three-level phaser and uncovered special
codimension-two [16] bifurcation points that are sources
of periodic, quasiperiodic, and chaotic LWI, as well as
multistability. Most interesting is the self-induced torus-
doubling cascade to chaotic LWI, a novel dynamical phe-
nomenon which is not yet fully understood. It has been
observed in numerical studies of dissipative media,
coupled electronic circuits, forced climate model, and
Navier-Stokes flow, as well as in experiments involving
electrochemical reactions, arrays of convective oscillators,
and ferroelectric crystals near phase transition [17]. A
phaser is the first reported example of an optical system
that shows a self-induced torus-doubling cascade and may
contribute to a better understanding of this general
phenomenon.

The results are obtained from solving the Maxwell-
Bloch equations in the rotating wave approximation for a
single-mode, three-level, ring-cavity phaser with the cavity
resonant frequency �cav and decay rate �cav:
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The Rabi frequencies are defined as �l�t� � �abEl�t�=@
and �p � �acEp=@, where the slowly varying El�t� and
constant Ep are the real amplitudes of the lasing and
coherent-pump electric fields, respectively, and �ab and
�ac are the dipole moments. The gain coefficient is defined
as g � Nj�abj

2�l�=�@��, whereN is the atomic density, �l
is the lasing-field frequency, and � is the optical-mode
confinement factor. We assumed a time-independent
pump-field phase, and the time derivative of the slowly
varying lasing-field phase _�l � �gRe��ab�=�l enters
into �l � �cav � _�l, where the cavity detuning is defined
as �cav � �ab � �cav. �p � �ac � �p, where �ij is the
atomic frequency of the i$ j transition and �p is the
coherent-pump-field frequency. �ii is the population of
level i, and we assumed �aa � �bb � �cc � 1. Ra �
���ab � �ac � �ac��aa � ��ab � �ac��bb � �ac and
Rb � ��ab � �cb��aa � ��cb � �ab � �cb��bb � �cb de-
scribe incoherent pump and decay processes, where �ij is
the decay rate from i to j, and �ij is the pump rate from j to
i, as indicated in Fig. 1.�ij are the slowly varying complex
amplitudes of the off-diagonal elements of density matrix
f�ijg, and �1 � ��ab � �ac � �ab � �cb�=2, �2 � ��ab �
�ac � �cb � �ac�=2, and �3 � ��cb � �ab � �ac �
�cb�=2 are the corresponding dephasing rates [12].

The stable fixed point of Eqs. (1)–(6) with �l � 0
corresponds to a phaser below threshold (off), and a stable
fixed point with �l > 0 corresponds to cw LWI. Periodic
orbit corresponds to LWI with periodically self-pulsating
intensity (sp). As the parameters are changed, the solutions
of Eqs. (1)–(6) can change as well. Qualitative changes in
the system’s dynamics, i.e., the bifurcations [16], are cal-
culated with the bifurcation continuation package AUTO

[18]. Transition from below threshold to cw LWI occurs
typically via supercritical pitchfork bifurcation. In super-
critical Hopf bifurcation, the stable point becomes unstable
by giving rise to stable periodic orbit. In subcritical Hopf
bifurcation, the unstable point may become stable by giv-
ing rise to unstable periodic orbit. A pair of stable and
unstable periodic orbits may disappear in the saddle node
of limit cycle bifurcation.

Bifurcations of Eqs. (1)–(6) are calculated in the
��p;�cav� plane for �p � 0, �cav � 0:03�, �ab �
0:055�, �ac � 0, �cb � 0:0055�, �ab � 0:045�, �ac �
0:45�, and �cb � 0. In the absence of the lasing and
coherent-pump field we have �0

aa � 0:45, �0
bb � 0:55,

and �0
cc � 0. Parameters are scaled with respect to a free

parameter �, and g is given in the figure captions. Chaos is

found for g=�2 � 100. Choosing � � 4	 108 s�1, using
the definition of g and assuming 1 D for �ij, 10 �m laser
wavelength, and � � 10�4, the required atomic density for
observing chaos is N � 4:5	 1023 m�3. For room tem-
perature, this corresponds to an active medium gas pressure
of 1842 Pa or 13.9 Torr. The dephasing rates, �i 
 108 s�1,
and the population decay rates, �ij 
 106 s�1, are consis-
tent with the values found in molecular gases. Furthermore,
�=� � 1 means a drive field intensity of 21 W=cm2, and
�cav � 1:2	 107 s�1.

The phaseonium gain per unit length for the a$ b
transition is related to the slowly varying polarization
�ab according to gain � �g

�����

�r
p

Im��ab�=�c��l�.
Figure 2(a) shows the gain profile (solid curve) and popu-
lation inversion (dashed curve) assuming no cavity and a
weak cw probe �l. For incoherent pump and decay rates
such that �0

cc � �
0
aa < 0, quantum coherence �cb induces

two spectrally separated inversionless-gain regions [9,12].
An interesting question arises as to what happens when this
phaseonium is placed inside a cavity.

Figure 2(b) depicts the bifurcation diagram in the
��cav;�p� plane in the close vicinity of the lasing thresh-
old. The cw LWI occurs detuned from the atomic reso-
nance inside two islands bounded by the pitchfork
bifurcation curves p� and p�. The diagram from
Fig. 2(b) may change drastically if the laser is operated
further above threshold. In particular, as g increases, the
two LWI regions from Fig. 2(b) grow in size and interact in
a very nonlinear fashion. The previous studies focused on
lasing near threshold. They reported bistability and peri-
odic self-pulsations around zero cavity detuning where the
two LWI regions overlap slightly [11–13]. This Letter
uncovers further and more complicated LWI instabilities
characteristic for inversionless lasing far above threshold.

Figure 3 shows the bifurcation diagrams in the
��cav;�p� plane that are typical for LWI far above thresh-
old. The two LWI regions overlap significantly, and for
g=�2 * 7, there are four intersection points between p�
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FIG. 2 (color online). (a) Gain (solid curve) and population
difference (dashed curve) for the three-level phaseonium from
Fig. 1 without a cavity; calculated with Eqs. (2)–(6) for �l=� �
0:5 and �p=� � 1. (b) Bifurcation diagram of LWI for the three-
level phaseonium inside a ring-cavity; calculated with Eqs. (1)–
(6) for g=�2 � 1. Regions of LWI are bounded by the p curves;
cw marks continuous wave LWI and off is for laser below
threshold. The laser is operated near its lasing threshold.
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FIG. 1. A three-level scheme for inversionless gain.
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and p�, called codimension-two double-pitchfork bifurca-
tions. At each point, (i) p� and p� change from super-
critical (solid curves) to subcritical (dashed curves) and

(ii) Hopf bifurcation curves h appear, giving rise to regions
of periodic self-pulsations (solid parts of h) and bistable cw
LWI (dashed parts of h). Also, there are saddle node of
limit cycle bifurcations s which partially bound regions of
periodic self-pulsations. In contrast to Fig. 2(b), the dia-
gram in Fig. 3(a) has a region of bistability at the atomic
resonance and three regions of periodic self-pulsations:
two located off the atomic resonance and a significantly
smaller one at the origin of the ��cav;�p� plane [more
distinct in Fig. 3(b)].

Upon further increasing g, two additional Hopf bifurca-
tion curves h� and h� appear, giving rise to additional
regions of self-pulsations [Fig. 3(b)]. Most importantly,
there are now four intersection points between different
h���� curves, called codimension-two double-Hopf bifur-
cations. Out of 11 possible cases of a double-Hopf bifur-
cation [16] we encountered the most complicated one,
which involves quasiperiodic and chaotic self-pulsations
indicated roughly by the shaded region in Fig. 3(b). Here,
we present two highlights of complicated LWI: torus dou-
bling to chaos and multistability.

The torus-doubling cascade shows some similarities to
the well-known infinite period-doubling cascade [19] but
differs in at least two significant aspects. First, torus dou-
bling requires at least a four-dimensional vector field.
Second, a torus-doubling cascade involves an interplay
between two types of transition to chaos, namely, period
doubling and the breakup of tori. In fact, the tori break up
within certain parameter intervals around each doubling
point. These intervals eventually overlap, owing to the
accumulation of subsequent doubling points, and this ef-
fect truncates the doubling cascade. If the two frequencies
of the torus f1 and f2 are comparable, one expects long
intervals with broken-up tori and only a few doubling
steps. If f1 � f2, as is in our case, one expects short
intervals with broken-up tori (possibly below what can be
detected numerically) and many more torus-doubling steps
[20]. In Fig. 4, the torus-doubling cascade is illustrated
with (top row) attractors in the Poincaré section and (bot-
tom row) corresponding power spectra of the phaser field
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FIG. 3 (color online). Bifurcation diagram of LWI for
(a) g=�2 � 25 and (b) g=�2 � 100. Region of LWI is bounded
by the solid parts of the p curves; cw marks continuous wave
LWI, bcw marks bistable continuous wave LWI, unshaded sp
marks periodic self-pulsing LWI, shaded sp roughly marks non-
periodic self-pulsing LWI, and off is for laser below threshold.
The laser is operated far above its lasing threshold.

FIG. 4. Torus doubling in transition to chaotic LWI shown as (top row) attractors in the projection of the Poincaré section
fIm��ab� � 0g and (bottom row) power spectra of �l�t�2. g=�2 � 100, �p=� � 4:4, and from (a) to (f) �cav=� � 1:0, 0.3, 0.2, 0.14,
0.13, and 0.1.
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intensity. Figure 4(a) shows periodic orbit of frequency f1,
born in the saddle node of limit cycle bifurcation inside the
shaded region in Fig. 3(b). This orbit crosses the Poincaré
section 4 times. With decreasing �cav, this periodic orbit
becomes unstable via torus bifurcation and gives rise to a
stable torus shown in the Poincaré section as two invariant
circles [Fig. 4(b)]. Motion on the two-dimensional torus
from Fig. 4(b) represents self-pulsating LWI with two
frequencies, f1 and f2. The trajectory appears to com-
pletely fill the two circles in the Poincaré section indicating
that these two frequencies are incommensurate, and the
phaser output is quasiperiodic. The power spectrum has
peaks at all integer linear combinations of f1 and f2. In
torus doubling, a two-dimensional torus becomes unstable
and a stable doubled torus appears [Fig. 4(c)]. This is
accompanied by the appearance of additional peaks in
the spectrum which can be expressed by integer linear
combinations of f1=2 and f2=2. We were able to distin-
guish four consecutive torus doublings before chaotic at-
tractor emerged with a spectrum that is a mixture of a
continuous background and strong discrete peaks
[Fig. 4(e)]. With further decrease in �cav, we observed a
transition to full-blown chaos with hardly any discrete
peaks in the spectrum [Fig. 4(f)]. Another interesting
phenomenon found inside the shaded region of Fig. 3(b)
is multistability. An example involving fixed point, peri-
odic orbit, and the doubled torus from Fig. 4(c) is shown in
Fig. 5. The torus-doubling cascade can be reached by
following the stable stationary point until it destabilizes
along the dashed part of h�.

In conclusion, this Letter investigates self-induced non-
linear behavior of a single-mode, three-level phaser. We
considered conditions under which quantum coherence
induces inversionless gain at two spectrally separated re-
gions off the atomic resonance. Such a gain profile gives
rise to two inversionless-lasing solutions. In the vicinity of
the lasing threshold, each of the two solutions exist inside a
separate region of inversionless lasing in the plane of the
coherent-pump strength and cavity detuning. However, as
the laser operates further above threshold, the two regions
of inversionless-lasing overlap, giving rise to strong optical
nonlinearities. These nonlinearities, governed by the pro-
cesses of self- and cross saturation between the two lasing
solutions [12], lead to special codimension-two double-
pitchfork and double-Hopf bifurcations in the bifurcation

diagram. The more interesting double-Hopf bifurcations
are sources of multistability and complicated inversionless
self-pulsations of the type distinctively different from in-
stabilities found in conventional lasers. In particular, we
uncovered the torus-doubling cascade in transition to cha-
otic lasing without inversion. A phaser is the first reported
example of an optical system that shows this interesting
bifurcation scenario. Note that single-mode conventional
lasers have a single spectral gain region, single lasing
solution, and cannot exhibit instabilities arising from the
nonlinear interaction between different lasing solutions
induced by quantum coherence.
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