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We demonstrate a strong coherent backward wave oscillation using forward propagating fields only.
This is achieved by applying laser fields to an ultradispersive medium with proper chosen detunings to
excite a molecular vibrational coherence that corresponds to a backward propagating wave. The physics
then has much in common with the propagation of ultraslow light. Applications to coherent scattering and
remote sensing are discussed.
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Quantum coherence [1,2] has been shown to result in
many counter-intuitive phenomena. The scattering via a
gradient force in gases [3], the forward Brillouin scattering
in ultradispersive resonant media [4,5], electromagneti-
cally induced transparency [6–9], slow light [10–13],
Doppler broadening elimination [14], light induced chi-
rality in nonchiral medium [15], a new class of entangle-
ment amplifier [16] based on correlated spontaneous
emission lasers [17,18], and the coherent Raman scattering
enhancement via maximal coherence in atoms [19] and
biomolecules [20–22] are a few examples that demonstrate
the importance of quantum coherence.

In this Letter, we predict strong coherent backward
scattering via excitation of quantum coherence between
atomic or molecular levels. The developed approach can
also be used to control the direction of the signal generated
in coherent Raman scattering and other four-wave mixing
(FWM) schemes.

Let us consider the four-wave mixing in a 3-level atomic
medium. The pump and Stokes fields E1 and E2 (whose
Rabi frequencies are defined as �1 � }1E1=@ and �2 �
}2E2=@, where }1 and }2 are the dipole moments of the
corresponding transitions) with wave vectors k1 and k2 and
angular frequencies �1 and �2 induce a coherence grating
in the medium (see Fig. 1) given by [2]

 �cb ���1��2: (1)

Let us stress that the �cb coherence grating has an
exp�i�k1 � k2�z� spatial dependence. In an ultradispersive
medium (see Fig. 2) where fields propagate with a slow
group velocity, the two copropagating fields have wave
vectors given by

 k1 ’ k1�!ab� 	
@k1

@�1
��1 �!ab�

� !ab=c	 ��1 �!ab�=Vg; (2)

where Vg is the group velocity of the first wave, !ab is the
frequency of the transition between levels a and b, and

k2 � �2=c. Thus these two fields create a coherence grat-
ing in the medium with spatial phase determined by k1 �

k2 � !cb=c	 ��1 �!ab�=Vg which depends strongly on
the detuning � � �1 �!ab. By properly choosing the
detuning, �, one can make k1 � k2 negative.

After the coherence �bc is induced in the medium, a
probe field E3, with Rabi frequency �3 � }3E3=@ and
wave vector k3, scatters off that coherence to produce the
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FIG. 1 (color online). (a) Copropagating fields 1 and 2 induce
coherent grading inside the medium. The field 3 propagating in
the same direction will be scattered in the opposite direction
because the coherence excited by fields 1 and 2 is propagating in
the opposite direction (see Fig. 2). Level scheme, double � (b),
for implementation of coherent backscattering.
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signal field, �4. The signal field depends on the coherence
and the input fields as

 

@
@z

�4 � �cb�3 ��1��2�3 � ei�k1�k2	k3�k4�z: (3)

That is, the propagation direction of �4 depends on the
spatial phase of the �bc coherence through the phase-
matching condition k4 � k1 � k2 	 k3 [23] while its fre-
quency is determined by �4 � �1 � �2 	 �3.

We here show that for dispersive media one can obtain a
strong signal in the backward direction even when all three
input fields propagate forward. This is contrary to the usual
nondispersive media results, where the phase matching in
the backward direction cannot be achieved for E1, E2, and
E3 counterpropagating with respect to E4 [23].

To demonstrate this result, we write the interaction
Hamiltonian of the system as

 VI��@��1e
�i!abtjaihbj	�2e

�i!actjaihcj	H:c:� (4)

 �@��4e
�i!dbtjdihbj	�3e

�i!dctjdihcj	H:c:�; (5)

where �4 � }4E4=@ is the Rabi frequency of the signal
field and !ab, !ac, !db, !dc are the frequency differences
between the corresponding atomic or molecular energy
levels [see Fig. 1(b)]. The time-dependent density matrix
equations are given by

 

@�
@�
� �

i
@
�VI; �� �

1

2
���	 ���; (6)

where � is the relaxation matrix. A self-consistent system
also includes the field propagation equations

 

@�1

@z
	 ik1�1 ��i�1�ab;

@�2

@z
	 ik2�2 ��i�2�ac;

(7)

 

@�4

@z
	 ik4�4 ��i�3�db;

@�3

@z
	 ik3�3 ��i�4�dc;

(8)

where �j � �jN}2
j=�2�0c@� are the coupling constants

(j � 1, 2, 3, 4), N is the particle density of the medium,
�0 the permitivity in vacuum.

The equations of motion for the density matrix elements
of the polarization �ab and the coherence �cb are given by

 _� ab � ��ab�ab 	 i�1��aa � �bb� � i�cb��2; (9)

 _� cb � ��cb�cb 	 i�ca�1 � i�ab�2; (10)

where �ab � �ab 	 i�!ab � �1�; �ca � �ca � i�!ac �
�2�; �cb � �cb 	 i�!cb � �1 	 �2�; !cb is the frequency
of c� b transition, and ��	 are the relaxation rates at the
corresponding transitions. The equation for �ca is obtained
similarly to Eq. (9). In the steady-state regime, and assum-
ing that j�2j 
 j�1j, almost all of the population remains
in the ground level jbi, �bb ’ 1. Let us consider the fields
as plane waves: �1�z; t� � ~�1�z; t� exp�ik1z�, �2�z; t� �
~�2�z; t� exp�ik2z�, where ~�1�z; t� and ~�2�z; t� are the
slowly varying in envelopes of the fields �1

and �2 in space, while k1 � �1�1	

ab��1�

2 �=c and k2 �

�2�1	

ac��2�

2 �=c. The susceptibilities are 
ab � �1�ab=
�1 � 2c��1 �!ab�=��1Vg� and 
ac � �2�ac=�2 ’ 0.
By solving the self-consistent system of Maxwell’s
Eqs. (7) and (8), and the density matrix Eqs. (9) and
(10), we obtain Eq. (2) for the wave vectors, where Vg ’
cj�2j

2=��1�1� is the group velocity of the optical field �1.
Thus, the spatial dependence of �cb is determined by

 �k � k1 � k2 �
�1 � �2

c
	
�1 �!ab

Vg
: (11)

The signal field �4 is generated by the polarization �db of
the transition it couples [Eq. (8)]. The equation of motion
for this polarization element reads

 _� db � ��db�db 	 i�4��dd � �bb� � i�cb�3; (12)

where �db � �db 	 i�!db � �4�, and �4 is the frequency
of generated field. In the steady-state regime and for
j�4j � j�3j, the field �4 at the output of the cell is given
by

 �4 � �i
�4e

ik4L

�db

Z L

0
dzei�k3�k4�z�cb ~�3; (13)

where L is the length of the cell. Note here that Eq. (13) is
valid if the field j�3j does not affect the coherence �cb via
power broadening which is true if j�3j

2 � j�1j
2 	 j�2j
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FIG. 2. Dispersion k��� of ultradispersive medium. Choosing
� � �1 �!ab � �Vg!cb=c, we can have k1 � k2 < 0 even if
�1 > �2, thus the third field can be scattered opposite to the
direction of propagation of the first two fields.
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Hence, after integrating Eq. (13), by using �ab, �ca, and
�bc from Eqs. (9) and (10), we obtain for the scattered field
�4

 j�4j
2 �

�
sin��kL�
�kL

�
2 �2

4L
2j�1j

2j�3j
2

j�dbj
2j�2j

2 ; (14)

where �k � k3 	 �k� k4, and the expression in the
brackets describes the phase matching and determines the
direction in which the signal field is generated (a small
mismatch �k of the order of 1=L is allowed).

The most interesting effect following from Eq. (14) is
the coherent backscattering. Indeed, even when all three
input fields propagate forward, one may observe a back-
scattered signal field by satisfying the condition

 k3 	 �k � k3 	
!cb

c
	
�1 �!ab

Vg
� �jk4j; (15)

and for appropriate detuning, �1 �!ab < 0, this equality
can be met. That is, in order to obtain phase matching in the
backward direction, we have to satisfy

 �
�1 �!ab

Vg
� k3 	

!cb

c
	 jk4j ’ 2jk4j: (16)

Hence, in order to demonstrate the effect, the detuning �
should meet the condition � � �2jk4jVg. It is useful to
rewrite the condition in terms of susceptibility for the
probe field, indeed,

 k1 �
�1

c
n1 ’

�1

c

�
1	 c

�1 �!ab

�1Vg

�
�
�1

c

�
1� c

2jk4j

�1

�
;

(17)

then, 
ab � 2�n1 � 1� � �4 �ab
�db

, for gases 
ab � 1, so
�ab � �db, i.e., the effect can be implemented for scatter-
ing of ir fields. Then, for the Doppler broadened EIT media
as shown in [24,25], we can write

 
ab��� ’
3�3

abN

8�2

�
�r�

j�2j
2 	 i

�r�D�
2

j�2j
4

�
; (18)

where �D � k1uD is the Doppler width; uD is the rms
velocity; �r is the radiative decay rate. Thus, for detuning
smaller than the EIT width j�j � j�2j

2=
������������
�r�D

p
, absorp-

tion can be neglected, and

 

3�2
abN�r�

16�j�j2
� �2jk4j; (19)

then, the atomic or molecular density is given by

 N �
32�jk4j

3�2
ab

j�2j
2

�rj�j
’

32�jk4j

3�2
ab

�������
�D

�r

s
: (20)

There are several schemes to demonstrate the effect. For
example, the double-Lambda scheme can be implemented
in molecular rotational levels [see Fig. 1(a)]. Moreover, the
effect can be implemented in the ladder-� using molecular

vibrational levels [see Fig. 3(a)]. The phase-matching con-
dition should be slightly modified for this scheme as k4 �
k1 � k2 � k3. Also, the phenomenon can be demonstrated
in a V-� scheme that can be realized in atomic levels [see
Fig. 3(b), for Rb atoms, b � 5S1=2, c � 7D3=2;5=2, a �
5P1=2;3=2, d � 8P1=2;3=2], and phase-matching condition
has a form k4 � k1 	 k2 � k3. Let us note that the require-
ment for detuning in all cases is �=Vg � �2jk4j, and the
Eq. (20) to estimate molecular or atomic density is still
valid.

As examples of systems where this effect could be
observed, we suggest NO molecules (resonant transition
at 236 nm, A2�	 � X2�), NO2 molecules (resonant tran-
sition at wavelength 337 nm), and atomic Rb vapor. Let us
note that EIT and CPT on molecules have been demon-
strated recently, see [26]. The required molecular density
of NO and NO2 molecules is N ’ 1:2
 1013 cm�3 if one
can use transition between rotational levels ’ 10 cm�1.
Using vibrational ir transitions for NO (vibration fre-
quency of 1900 cm�1) at 5:26 
m and for NO2 (vibra-
tional frequency of 750 cm�1) 13:3 
m, the densities are
N � 8
 1015 cm�3 and N � 1:4
 1015 cm�3, corre-
spondingly. For atomic Rb vapor, wavelengths are �1 �
780 nm, �2 � 565 nm, �3 � 335 nm, �4 � 23:4 
m, and
the atomic density is N � 1:4
 1013 cm�3.

The intensity needed for EIT is determined by the con-
dition j�j2 
 �bc�D [24,25,27] which corresponds to a
laser intensity of the order of 1 mW=cm2 for atoms and of
the order of 10 W=cm2 for molecules, since typically the
dipole moments are 2 orders of magnitude smaller for
molecules. These conditions are realistic and well suited
for an experimental implementation. We note that, for the
schemes shown in Fig. 1(b) and 3(a), the coherence prepa-
ration fields, �1 and �2, are in a � configuration and have
almost the same frequency (�1 ’ �2) hence there is no
Doppler broadening on the TWO-photon transition [1,2].
Meanwhile, for the scheme shown in Fig. 3(b), the field

Ω 4

Ω1

3Ω

Ω2

4Ω

3Ω

Ω2

Ω1

a

b

c

d
b

c

a

d

(a) (b)

k1

k2

k3

k4

k4

k3
k1

k2

FIG. 3 (color online). Implementation: molecular systems,
(a) vibrational levels; copropagating fields 1 and 2 induce
coherent between vibrational levels. The field 3 propagating in
the same direction will be scattered in the opposite direction.
(b) Atomic Rb scheme for implementation of coherent backscat-
tering.
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frequencies are different, and the Doppler broadening at
the two-photon transition leads to the depletion of the
signal field �1 [21]. Then, Eq. (14) can be rewritten as

 j�4j
2 �
�1� e��L�2 	 4e��Lsin2 �kL

2

�k2 	 �2

�2
4j�1j

2j�3j
2

j�dbj
2j�2j

2 ;

where � � 3�2N�r��cb 	 j�kjuD�=�8�j�2j
2� is the ab-

sorption coefficient of �1. One can see that the signal
generation occurs at the effective length determined by
the absorption of the signal field Leff � ��1 instead of L.
To avoid additional Doppler broadening, the experiments
could be performed in cold gases.

Several applications of the effect can be envisioned, like
in nonlinear CARS microscopy [28], while the controlling
of coherent backscattering could provide a new tool for
creating an image. A variation in the molecular density
would modify the intensity of the signal in both the for-
ward and the backward direction. Additionally, Eq. (14)
also allows one to control the direction of the generated
signal field and thus provide an all-optical control when
scanning an optical field over an object.

In conclusion, we theoretically predict strong coherent
scattering in the backward direction while using only for-
ward propagating fields. This is achieved by exciting
atomic or molecular coherence by properly detuned fields,
in such a way that the resulting coherence has a spatial
phase corresponding to a backward, counterpropagating
wave. Applications of the technique to coherent scattering
and remote sensing are discussed. The method holds prom-
ise for observing induced scattering in a backward direc-
tion with application to CARS microscopy.
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