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We measure the spectral densities of fluctuations of an underdamped nonlinear micromechanical
oscillator. By applying a sufficiently large periodic excitation, two stable dynamical states are obtained
within a particular range of driving frequency. White noise is injected into the excitation, allowing the
system to overcome the activation barrier and switch between the two states. While the oscillator pre-
dominately resides in one of the two states for most frequencies, a narrow range of frequencies exist where
the occupations of the two states are approximately equal. At these frequencies, the oscillator undergoes a
kinetic phase transition that resembles the phase transition of thermal equilibrium systems. We observe a
supernarrow peak in the spectral densities of fluctuations of the oscillator. This peak is centered at the
excitation frequency and arises as a result of noise-induced transitions between the two dynamical states.
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Periodically driven nonlinear systems often display mul-
tiple coexisting dynamical states under sufficiently strong
driving fields. The presence of fluctuations enables these
systems to occasionally overcome the activation barrier in
phase space, resulting in transitions between the dynamical
states [1]. Noise-induced switching has been studied ex-
perimentally in a number of dynamical nonlinear systems
that are far from equilibrium, including parametrically
driven electrons in a Penning trap [2], atoms in a
magneto-optical trap [3], radio frequency driven
Josephson junctions [4] and micromechanical and nano-
mechanical oscillators [5–7]. When the noise is weak, the
escape rate �i out of state i (i � 1 or 2) depends exponen-
tially on the ratio of an activation barrier Ri and the noise
intensity IN [1]:

 �i / e�Ri=IN : (1)

Ri typically depends on system parameters such as the
driving frequency and amplitude, as well as the shape of
the power spectrum of the noise. The ratio of the popula-
tions of the two dynamical states is given by [1]

 w1=w2 / e�R2�R1�=IN : (2)

As a result of the exponential dependence of the population
ratio on the difference in the activation barriers, the system
will be found in either state 1 or state 2 with overwhelm-
ingly large probability over most of the parameter space
[1,8]. The occupations of the two states are comparable
only over a very narrow range of parameters. This behavior
bears close resemblance to systems in thermal equilibrium
with two phases such as liquid and vapor. Such thermody-
namic systems are usually in either one of the two phases
and only at the phase transition will the two phases coexist.
Even though driven, nonlinear systems are in general far
from equilibrium, theoretical works predicted that a similar
kinetic phase transition would occur under the appropriate

conditions [1]. Like thermodynamic systems, fluctuations
increase significantly when these nonequilibrium systems
undergo kinetic phase transitions. A range of generic,
system-independent phenomena, including the appearance
of a supernarrow peak in both the susceptibility and the
spectral density of fluctuations [1,9], is expected to take
place. However, these phenomena have so far only been
observed in analog circuit simulations [10].

In this Letter, we measure the spectral densities of
fluctuations of an underdamped nonlinear micromechani-
cal torsional oscillator near the kinetic phase transition
where the populations of the two attractors are comparable.
The most prominent feature in the fluctuation spectrum is a
narrow peak centered at the frequency of the periodic
excitation. We demonstrate that this narrow peak is asso-
ciated with noise-induced transitions between the two
attractors. Away from the kinetic phase transition, the
intensity of the peak decreases exponentially. Apart from
the narrow peak, we also observe smaller, much broader
peaks in the spectrum that are associated with fluctuations
within each attractor. These broad peaks are present for all
driving frequencies within the hysteresis loop and their
dependence on the noise intensity is distinct from the
narrow peaks at the kinetic phase transition.

A micromechanical oscillator, consisting of a moveable
polysilicon plate supported by two torsional rods, was used
to take the measurements in our experiment. Figure 1(a)
shows a schematic of the setup. Two fixed electrodes are
located beneath the movable polysilicon plate, one on each
side of the torsional rods. A voltage V applied to one of the
electrodes generates an electrostatic torque that excites the
torsional oscillations. The other electrode is used to ca-
pacitively detect the oscillations. All measurements were
taken at a temperature of 77 K and pressure <10�7 torr.
The driving voltage V is a sum of a biasing dc voltage, a
periodic ac voltage with frequency fd �

!d
2� and random

noise. The motion of the oscillator can be approximately
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described by the Duffing equation with an additional term
n�t� arising from noise in the excitation

 

��� 2� _��!2
0�� ��

3 � E sin�!dt� � n�t�; (3)

where !0 is the natural frequency for small oscillations, E
is the effective amplitude of the periodic excitation, � is the
damping constant, and � is the coefficient of the cubic
nonlinearity (an omitted term that is quadratic in � leads to
renormalization of the nonlinear coefficients). A more
thorough description of the setup and derivation of the
equation of motion can be found in Refs. [6,11].

In the absence of noise and at small driving torque, the
response of the oscillator corresponds to that of a damped
harmonic oscillator with a resonant frequency of 3286 Hz
and Q � 8000. When the driving torque is increased be-
yond a critical value, the frequency response becomes
hysteretic due to the nonlinearity. Within a range of driving
frequencies, two stable dynamical states coexist. As shown
in Fig. 2(a), the hysteretic behavior qualitatively resembles
the response of a Duffing oscillator. The agreement, how-
ever, is not exact due to higher order nonlinearities intro-
duced by the strongly distance-dependent electrostatic
attraction. In the absence of fluctuations, no transitions
occur between the two states. When sufficient noise is
injected into the driving voltage, the oscillator switches
between the two attractors. Over most of the hysteresis
loop, the activation barriers R1;2 for escape from the two
states are significantly different. The hollow and solid
triangles in Fig. 2(b) show whigh and wlow, the occupation
of the high-amplitude and low-amplitude states, respec-
tively. On the low frequency side of the hysteresis loop,

wlow is considerably higher than whigh and the probability
of finding the oscillator in the low-amplitude state is close
to unity. As the driving frequency decreases, the activation
barrier R1 for switching out of the high-amplitude states
decreases. At the bifurcation frequency (f1 � 3283:3 Hz),
R1 goes to zero and the low-amplitude state becomes the
only attractor. In an earlier experiment [6], we showed that
R1 depends on the detuning frequency (fd � f1) in the
vicinity of the bifurcation point with a critical exponent of
3=2 in agreement with theoretical predictions [1]. On the
high frequency side of the hysteresis loop, a similar argu-
ment applies except that the high-amplitude state is the
stable attractor.

While the oscillator is predominantly in one of the
attractors over most of the hysteresis region, there exists
a small range of frequencies where whigh and wlow are of
the same order of magnitude. Figure 1(b) shows the oscil-
lation amplitude as a function of time at a driving fre-
quency of 3284.8 Hz and clearly illustrates the system
switching between the two states. The relative occupation
of the two states at this driving frequency is deduced by
calculating the area under the two peaks in the histogram of
the oscillation amplitude [Fig. 1(c)].

Even though the nonlinear oscillator is a driven system
that is far from equilibrium, the above behavior resembles
thermodynamical systems at phase transitions when two
phases coexist. A kinetic phase transition was predicted to
occur in nonequilibrium systems when the populations of
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FIG. 2. (a) Normalized frequency response of the oscillator
(circles) fitted to a damped oscillator with cubic nonlinearity
(solid line). (b) Occupation of the two states versus frequency. At
the kinetic phase transition (fp � 3284:8 Hz), whigh (upright
triangles) and wlow (inverted triangles) are comparable.
(c) Dependence of the intensity of the supernarrow spectral
peak on the driving frequency fd.
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FIG. 1. (a) A cross-sectional schematic of the micromechan-
ical torsional oscillator with electrical connections and measure-
ment circuitry (not to scale). (b) Time trace of the normalized
oscillation amplitude near a kinetic phase transition, demonstrat-
ing transitions between the two states. (c) Histogram of the
oscillation amplitude of the oscillator near a kinetic phase
transition showing equal occupation of the two states.
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the two dynamical states are equal [1,9,10]. An important
feature associated with phase transitions is the onset of
large fluctuations associated with transitions between the
two states. We perform a systematic study of the fluctua-
tions of the nonlinear oscillator at the kinetic phase tran-
sition by examining the power spectral densities of the
oscillator response.

To obtain the spectral densities of fluctuations, we re-
cord the slowly varying envelope of the oscillations using a
lock-in amplifier with a bandwidth of about 30 Hz. The
response of the oscillator can be written as

 ��t� � A�t� cos�2�fdt� � B�t� sin�2�fdt�; (4)

where A�t� and B�t� are the amplitudes of oscillations in
and out of phase with the driving torque at frequency fd.
The spectral density of fluctuations is given by [12]
 

Q�f� �
1

N

X

�

X

t

f�A�t� � iB�t���A�t� �� � iB�t� ���

	 e�i2��f�fd��g; (5)

where N is a normalization constant.
In the absence of injected noise, oscillations occur only

at the periodic driving frequency fd and the measured
spectrum consists of a delta function centered at fd.
When noise is added to the excitation, the spectral densities
of fluctuations become dramatically different. Figure 3
shows the spectral density of fluctuations at 3 different
periodic driving frequencies. To focus on fluctuations

about the ensemble average response, the delta function
peak at fd obtained with no injected noise is removed from
the spectrum. In other words, the data point at fd is omitted
for each panel in Fig. 3. Figure 3(b) shows the spectral
density of fluctuations at the driving frequency fd � fp
where the occupations of the two states are equal. The most
prominent feature is a very sharp peak centered at the
driving frequency. The width of this peak is a factor of
10 smaller than the natural width of the resonance peak.
This sharp peak is predicted to arise [1] due to fluctuation-
induced transition between the two dynamical states.
Figures 3(a) and 3(c) show the spectral density at two other
driving frequencies that are comparatively far away from
fp. As the periodic driving frequency is changed so that the
oscillator moves away from the phase transition point, the
sharp peak shifts accordingly to remain centered at the
driving frequency. The area under the peak, however, drops
significantly. Figure 2(c) plots the area under the narrow
peak as a function of periodic driving frequency, clearly
demonstrating that the intensity of the supernarrow peak
attains maximum at the kinetic phase transition and de-
creases exponentially as the occupation of one of the states
exceeds the other and transitions between the states be-
come less frequent.

Figure 4(a) shows the behavior of the supernarrow peak
with different noise intensities when the periodic driving
frequency is held constant to maintain the oscillator at the
kinetic phase transition. The noise intensity differs by a
factor of 4 between solid and hollow circles. Both sets of
data are fitted well by Lorentzians [9,10]. As the noise in-
creases, the peak width increases and the peak height de-
creases. We found that the area under the peaks remains
about constant, changing by less than 10% when the noise
intensity changes by more than a factor of 4 [left inset of
Fig. 4(a)]. The right inset of Fig. 4(a) plots the peak width
as a function of the sum of the transition rates �i out of
each state, where the transition rates are determined di-
rectly from the residence time between transitions. The
linear dependence of the peak width on the transition rate
and the exponential decrease in the area of the peak away
from the kinetic phase transition clearly identify the super-
narrow peak with noise-induced transitions between the
attractors.

In addition to the supernarrow peak, there are other
peaks in the fluctuation spectrum that are weaker and
much broader than the supernarrow peak at the kinetic
phase transition. These peaks, unlike the supernarrow
peak, are present for all excitation frequencies within the
hysteresis loop [Figs. 3(d)–3(f)]. These smaller peaks
represent characteristic frequencies of fluctuations about
each dynamical state when the fluctuations are not strong
enough to induce a transition over the activation barrier. In
contrast to the supernarrow peak, the shape of these small
peaks do not change considerably as the noise intensity
increases [Fig. 4(b)] and their area varies proportionally
with noise intensity [inset of Fig. 4(b)].
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FIG. 3. Power spectral density of fluctuations for three differ-
ent drive frequencies fd: (a) 3284 Hz, (b) 3284.7 Hz,
(c) 3285.1 Hz. Notice that the vertical scale of (b) is more
than 20 times larger than (a) and (c). In (d), (e), and (f) the
axes have been rescaled to reveal the smaller and broader peaks
in the fluctuation spectrums of (a), (b), and (c), respectively.
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Systems in thermal equilibrium, such as a Brownian
particle fluctuating in symmetric double-wells potentials,
also exhibit narrow peaks in their fluctuation spectrum
[13]. The broadening of these peaks with increasing noise
intensity leads to the well-known phenomenon of stochas-
tic resonance [14]. Even though the supernarrow spectral
peak observed in our experiment also originates from
transitions between coexisting states, there are important
differences between our nonlinear oscillator and systems in
thermal equilibrium. First, noise-induced switching in our
oscillator occurs between two oscillation states with differ-
ent amplitude. Our oscillator is bistable only under strong
periodic drive. It is far from equilibrium [15–17] and is not
characterized by free energy. Second, at the kinetic phase
transition, the sharp spectral peak is centered at the driving
frequency. The lack of time reversal symmetry results in a
characteristic asymmetry in the broad peaks of the fluctua-
tion spectrum about the driving frequency [Fig. 4(b)]. In

contrast, for bistable systems in thermal equilibrium, the
fluctuation spectrum is centered at zero frequency and no
such asymmetric features are present.

The onset of the supernarrow spectral peak at compa-
rable state occupations is a generic phenomenon that is
expected to occur in other bistable systems far from equi-
librium, including rf-driven Josephson junctions [4], nano-
magnets driven by polarized current [18], and double
barrier resonant tunneling structures [19]. While theoreti-
cal analysis [1] considered a Duffing oscillator with cubic
nonlinearity, our measurements indicate that the supernar-
row peak is robust even when higher order nonlinearities
are present. The study of such critical kinetic phenomena
could open new opportunities in tunable narrow band filter-
ing and detection using micromechanical and nanome-
chanical oscillators.

We thank M. I. Dykman and D. Ryvkine for useful
discussions.
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FIG. 4. (a) The supernarrow peak for two intensities of in-
jected noise at the kinetic phase transition. The noise intensity
for the hollow circles is 4 times greater than the solid circles. The
dotted and solid lines are Lorentzian fits to the data. Left inset:
Dependence of the area of supernarrow peak on IN , where IN is
the intensity of the injected noise voltage that generates the
random driving n�t� in Eq. (3). Right inset: The peak width
versus transition rate. (b) The broad, small peak at two injected
noise intensities that differ by a factor of 2, at fd � 3284 Hz.
Inset: Linear dependence of the peak area on injected noise
intensity.
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