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Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized
vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin
et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak
particle density was studied. We present results of theoretical simulations which closely mimic the
experimental setup. We show that the combination of gravitational sag and time dependency of the
trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good
agreement with the experiments.
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Bose-Einstein condensation is associated with long-
range phase coherence among the condensed particles.
Because of this coherence, the dynamics of pure scalar
condensates can be accurately described using only a
single complex valued order parameter. The fact that the
condensate current density is proportional to the phase
gradient of the order parameter implies vorticity to be
quantized: vortices are topological defects in the order
parameter field with a quantum number multiple � of 2�
phase winding about the vortex line.

Especially, properties of quantized vortices in gaseous
atomic Bose-Einstein condensates (BECs) have been in-
tensively investigated during recent years, both experimen-
tally and theoretically; see Ref. [1] for a review. Since the
angular momentum associated with a vortex is roughly
proportional to the vorticity quantum number � but the
energy to its square, multiquantum vortices are typically
energetically unfavorable. Consequently, the usual experi-
mental methods to create vortices have yielded only singly
quantized vortices or clusters of them [2]. However, using
the topological phase engineering method originally sug-
gested by Nakahara et al. [3], first two- and four-quantum
vortices in dilute atomic BECs have been realized [4]. This
method utilizes the hyperfine spin degrees of freedom of
the order parameter, but finally produces a scalar conden-
sate containing a multiquantum vortex.

Theoretical analysis has revealed that in addition to
multiquantum vortices being energetically unfavorable in
harmonic traps, they are also in general dynamically un-
stable [5,6]. This dynamical instability implies that multi-
quantum vortices tend to split into singly quantized ones
even in the absence of dissipation, i.e., in pure condensates
without a noticeable thermal gas component. The splitting
dynamics is an interesting issue, because the energy and
angular momentum released from the multiquantum vortex
has to be redistributed in the system. The dynamics of the
splitting of doubly quantized vortices created in the experi-
ments reported in Ref. [4] was theoretically studied in

Ref. [6], and two major observations were made: the initial
dynamics in a cigar-shaped condensate can be modeled to
some extent using only an effective two-dimensional local
density analysis, and proper three-dimensional computa-
tions showed that the two vortices separating out from the
doubly quantized vortex usually intertwine strongly as they
split.

Recently, the splitting of doubly quantized vortices was
experimentally observed and the splitting time, i.e., the
time interval between the creation of the vortex and the
point when two separable vortex cores were observed, was
measured as a function of the peak condensate density [7].
According to Ref. [7], the temperature was low enough for
one to be able to neglect the effects of thermal atoms and
dissipation. The experimental results verified that the dou-
bly quantized vortex splits into two singly quantized ones.
However, since only particle densities averaged over a
short slice in the longitudal direction of the condensate
were measured, no intertwining of the vortices was
observed.

In this Letter, we directly model the experiments re-
ported in Ref. [7] and compare the theoretical and experi-
mental results. We solve the full three-dimensional
dynamics of the condensate using the Gross-Pitaevskii
(GP) equation with time-dependent trapping potential
combined with gravitational potential, closely correspond-
ing to the experiments. From the condensate density pro-
files, we determine the splitting time as a function of the
peak condensate density and analyze the effects of vortex
intertwining. Contrary to previous theoretical results pre-
sented in Ref. [8], we find that the gravitational and the
time-dependent trapping potentials together break the rota-
tional symmetry and initiate the splitting process strongly
enough to alone yield splitting times in good agreement
with experiments. Thus the effect of thermal excitations is
not relevant in modeling the experiments.

At low enough temperatures, the effect of the thermal
gas component can be neglected and the entire gaseous
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many-particle system of trapped atoms can be described by
the condensate order parameter  �r; t�. The dynamics of
this dilute condensate is governed by the GP equation
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where V�r; t� is the external potential, m is the mass of the
atoms, and the strength of the interactions is governed by
the parameter g � 4�@2a=m expressed in terms of the
s-wave scattering length a. The order parameter is normal-
ized according to the total number of atoms as

R
j j2dr �

N. The stationary state solutions of the GP equation with
eigenvalue� are of the form  �r; t� � e�i�t=@ �r�, and the
excitation spectrum of these states can be solved from the
Bogoliubov equations. The excitation spectrum determines
the stability properties of the state: The existence of modes
with negative energy but positive norm implies that the
corresponding stationary state is energetically unstable;
i.e., in the presence of dissipation and small perturbations
the state will decay. Furthermore, the existence of modes
with nonreal eigenfrequencies implies the state to be dy-
namically unstable, i.e., infinitesimal perturbations may
grow exponentially in time, and thus the stationary state
may decay even in the absence of dissipation.

Examples of these kind of states are the axisymmetric
vortex states of the form  �r� � ei2��� �r; z�, where
��; r; z� denote the cylindrical coordinates and � � 0.
These states are energetically unstable in harmonic traps
since vortices tend to spiral out of the condensate due to the
buoyancy force. In addition, for quantum numbers j�j � 2
there typically exists excitations with nonreal eigenfre-
quencies, which implies the corresponding states to be
dynamically unstable and to split into singly quantized
vortices. Especially, the dynamical instability of doubly
quantized vortices has been demonstrated both theoreti-
cally [5,6] and experimentally [7].

In the experiments reported in Ref. [7], Shin et al.
created a doubly quantized vortex into a dilute BEC of
23Na atoms confined in a Ioffe-Pritchard trap by reversing
the axial bias field Bz linearly in 12 ms. The thermal gas
fraction was not discernible in the experiments, and hence
dissipation was presumably extremely weak.

We have modeled these experiments by computing the
time evolution of the condensate using the GP equation.
Starting from energy minimized axisymmetric doubly
quantized vortex states corresponding to different values
of the density parameter anz � a

R
j �x; y; 0�j2dxdy (at

the center of the condensate z � 0), we calculate the
condensate dynamics in the time-dependent external po-
tential corresponding to the Ioffe-Pritchard trap and grav-
ity. Taking the gravity into account turns out to be crucial,
since only the combined potential breaks the rotational
symmetry about the vortex axis and is shown to initiate
the vortex splitting process. In the computations, we used

finite-difference discretization. The initial states were
found using imaginary time integration, and the time evo-
lution was calculated by a split operator method.

In a Ioffe-Pritchard trap, the square of the total magnetic
field strength to the second order in the radial and axial
coordinates is given by [9]

 B2�t� � C2r2 � Bz�t�A�z2 � 1
2r

2� � B2
z�t�; (2)

where A determines the curvature of the initial axial field,
C characterizes the strength of the field generated by the
Ioffe bars, and Bz is the axial bias field. Including gravity,
the external potential for the weak-field seeking state of a
spin-1 condensate reads

 V�r; t� � �gL�BB�t� �Gmx; (3)

where gL � �1=4 and G is the gravitational acceleration.
At t � 0, the term Bz�0� dominates in Eq. (2) in the vicinity
of the center of the trap, and hence the total potential is
approximately harmonic in the condensate region. The
initial potential is of the form

 V�r; 0� 	 1
2m!

2
zz

2 � 1
2m!

2
rfy

2 � �x� x0�0��
2g � const:

(4)

According to the experiments, we choose the parameters A
and C such that the axial and radial trapping frequencies
are !z � 12 Hz and !r � 220 Hz, respectively. In addi-
tion, x0�t� � GmjBz�t�j=�gL�B�C2 � Bz�t�A=2�� is the lo-
cation of the minimum of V�r; t�. The bias field Bz vanishes
at t � 6 ms, and hence the radial trapping potential is
linear with respect to r. As Bz�t� passes through zero, the
sign of A is changed in order to keep the axial field
confining. After the reversal of Bz at t � 12 ms, the po-
tential assumes its initial form.

The main results of our simulations are presented in
Figs. 1–5. Figure 1 shows the location x0�t� of the mini-
mum of V�r; t� and the computed location of the center of

FIG. 1. Location x0�t� of the minimum of the total potential
V�r; t� (dashed line) and the location xc:m:�t� of the center of mass
of the condensate (solid line). Because of inertia, the condensate
lags behind the center of the potential, which breaks the rota-
tional symmetry of the system. This perturbation initiates the
splitting of the doubly quantized vortex.
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mass of the condensate as functions of time. Since the
condensate slightly lags behind the time-dependent center
of the potential, the rotational symmetry of the initial
condensate state is broken. This perturbation also excites
the dipole mode of the condensate, which is manifested by
the oscillatory behavior of the center of mass after the
potential has returned to its initial form. However, the
amplitude of the dipole oscillation is less than 3% of the
diameter of the condensate.

In the effectively two-dimensional case, for which!z �
0 and the condensate is homogenous in the z direction, the
imaginary part of the frequency corresponding to the
eigenmode responsible for the dynamical instability as-
sumes a quasiperiodic form as function of anz [5,6], and
vanishes in some regions of the parameter anz. Also in
three-dimensional cigar-shaped condensates, regions
where splitting is significantly faster or slower are clearly
distinguishable. In Fig. 2(a), the isosurface of a condensate
with anz � 2:56 is plotted at t � 10:9 ms. In this case, the
splitting process is initiated along the whole length of the
condensate, to be contrasted to the case anz � 14:4 at t �

39:8 ms depicted in Fig. 2(b), in which the splitting ini-
tiates only from the ends and center of the condensate.
Since the precession frequency of the vortices depends on
their distance, intertwining is observed in cases which
contain such stable regions. Note also the distinctive sur-
face mode excitations due to the additional energy and
angular momentum released in the splitting process.

We determine the splitting times T from the density
profiles �n�x; y� �

R15 �m
�15 �m j �x; y; z�j

2dz, mimicking the
tomographic imaging technique used in the experiments
[7]. Roughly, when two minima are observed in the density
profile with their separation exceeding the diameter of a
singly quantized vortex, the doubly quantized vortex was
considered split in the experiments. We define the diameter
of a single quantum vortex as twice the distance from the
vortex center to 75% of the maximum value in the density
profile �n�x; y� of the stationary single quantum vortex state.
In Fig. 3, the density profile �n�x; y� is plotted at t � 10:9,
14.5, and 18.1 ms for anz � 2:56. From the isosurface plot
in Fig. 2(a), one might argue that the vortex has already
split at t � 10:9 ms, but from the density plot in Fig. 3(a)

FIG. 5 (color online). (a) Isosurface plot of the vortex chain
structure formed in a condensate with anz � 11:0 at t �
54:3 ms. The value defining the isosurface is of the order of
10% of the maximal density. (b) The corresponding density
profile �n�x; y� shows four minima instead of two. The field of
view in (b) is 6:8 �m
 6:8 �m.

FIG. 2 (color online). Isosurfaces of condensate densities for
(a) anz � 2:56 at time t � 10:9 ms and (b) anz � 14:4 at t �
39:8 ms. The values defining the isosurfaces are of the order of
1% of the maximal density.

FIG. 4. The splitting time T of a doubly quantized vortex as a
function of anz. The splitting time decreases rapidly as inter-
actions are introduced in the system attaining its minimum value
around anz 	 3. As the interaction strength is increased further,
T increases due to the stable region near the center of the
condensate. The splitting time saturates roughly to T 	 55 ms
for interaction strengths anz > 10.

FIG. 3. Density profiles �n�x; y� �
R15 �m
�15 �m j �x; y; z�j

2dz of a
condensate with anz � 2:56 at three different times t. The
splitting time of the doubly quantized vortex is determined by
comparing the separation of the local minima in the density
profiles to the diameter of a single quantum vortex represented
by the white circle corresponding to a diameter of 1:8 �m in (a).
The field of view in these figures is 13:5 �m
 13:5 �m.
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no such conclusions can be made. In Fig. 3(b), the distance
of the local density minima already exceeds the single
quantum vortex diameter and a detailed analysis yields
T � 13:7 ms for the splitting time.

Figure 4 shows the splitting times for values of anz
ranging from 0 to 20 corresponding up to N � 8
 105

23Na atoms. A finite splitting time T is obtained also in the
noninteracting case, which concurs with the observation
that persistent stationary currents exist in the noninteract-
ing case only if the spectrum of the Hamiltonian is degen-
erate [10]. For anz < 3, T decreases with increasing
interaction strength. This effect is also visible in the recent
theoretical study of Ref. [8], but it is not clearly observable
in the experimental results [7]. The splitting time attains its
minimum at anz 	 3, which is in good agreement with the
Bogoliubov eigenvalue spectrum analysis accomplished in
Refs. [5,6]. For anz > 10, T saturates to a finite value,
which is in fair agreement with the experimental results
[7], although the saturation value is roughly 20% larger in
the experiments. The overall form of the computed split-
ting times as a function of anz agrees well with the experi-
mental data, and the agreement is surprisingly good even
for the quantitative results. Note that the computed split-
ting times are generally somewhat smaller than the mea-
sured ones, implying that the time dependency of the
external potential alone gives sufficiently strong impetus
for the splitting, and the additional contribution of thermal
fluctuations is not needed. We have also checked that the
splitting is not initiated by numerical instabilities: when
gravity is neglected, there is no sign of splitting or rota-
tional symmetry breaking even after 50 ms for anz 	 4.

A few points should be taken into account when com-
paring the computed splitting times to experimental values.
First, our simulations neglect the multicomponent nature
of the condensate when the multiquantum vortex is created
by reversing the bias field Bz. In our simulations, we begin
with the multiquantum vortex state already at t � 0.
Effectively, this difference can roughly be assumed to
shorten the computed lifetimes of the multiquantum vorti-
ces by half of the reversing time, i.e., by 6 ms. However,
this difference is presumably more than compensated by
the fact that in the simulations we start counting the split-
ting time from the beginning of the perturbation, whereas
in the experiments the time is counted from the end of the
perturbation. We have also checked computationally that
the presence of the vortex already at t � 0 only slightly
alters the amplitude of the quadrupole oscillations induced
by the external potential in the beginning of the bias field
reversal—these oscillations finally initiate the vortex split-
ting process. Second, in the experiments the condensate is
let to expand freely for 15 ms before imaging, and in our

results possible changes in the relative vortex separation
during this expansion period are neglected.

For values near anz 	 10, where there is a stable region
at the center of the condensate, a peculiar linked chain-type
structure for the intertwined vortices was observed; see
Fig. 5(a). The z-integrated density profile observed with
the tomographic imaging technique is shown in Fig. 5(b).
In this case, there are four distinct minima in the density
profile instead of the usual two. This effect could explain
the observation interpreted as crossing of the vortex lines in
the experiments.

In conclusion, we have calculated the splitting times of
doubly quantized vortices as a function of peak particle
density by solving the time-dependent Gross-Pitaevskii
equation numerically, mimicking closely the experiments
reported in Ref. [7]. The results are in good agreement with
the experimental data, confirming that thermal fluctuations
are not required to explain the measured splitting times.
Instead, the main impetus for the rotational symmetry
breaking and splitting is the combination of the gravita-
tional and time-dependent trapping potentials.
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