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Magnetically Tuned Spin Dynamics Resonance
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We present the experimental observation of a magnetically tuned resonance phenomenon in the spin
mixing dynamics of ultracold atomic gases. In particular, we study the magnetic field dependence of spin
conversion in F = 2 3"Rb spinor condensates in the crossover from interaction dominated to quadratic
Zeeman dominated dynamics. We discuss the observations in the framework of spin dynamics as well as
matter wave four wave mixing. Furthermore, we show that the validity range of the single mode
approximation for spin dynamics is significantly extended at high magnetic field.
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Ultracold quantum gas spin mixtures are currently re-
ceiving rapidly growing experimental and theoretical in-
terest. They combine the unprecedented control achieved
in single component Bose-Einstein condensates (BEC)
with intrinsic degrees of freedom. The spin-dependent
coupling connects quantum gas physics to fundamental
magnetic phenomena. Earlier work analyzed the basic
magnetic properties of these spinor condensates [1-4]
and demonstrated antiferromagnetic behavior in the F =
1 state of 2>Na [5] and the F = 2 state of ’Rb [6] as well as
ferromagnetic behavior in the F = 1 state of ¥’Rb [6,7].

A particularly interesting feature of these clean and
undisturbed systems is that they give access to quantum
aspects of magnetism such as interaction-driven spin os-
cillations [6—12], the quantum classical transition [13], or
domain formation [5,12,14]. The magnetic field depen-
dence of the underlying spin conversion process has been
analyzed in detail for F = 1 spinor condensates [13,15—
17] and besides oscillatory behavior, a resonance phe-
nomenon was predicted [17]. Experiments so far focused
on magnetic fields above the resonance [13] and on mag-
netic phase controlling of the spinor dynamics , but a spin
mixing resonance has not yet been observed.

In this Letter, we study for the first time magnetic field
tuned spin mixing in F = 2 3Rb spinor condensates. In
particular as a main result, we demonstrate resonant spin
mixing behavior in spinor condensates. This resonance
phenomenon becomes evident in the temporal population
evolution shown in Fig. 1. As a surprising central effect,
the mean field driven spin dynamics (population transfer
from myp * 1 to my = 0) strongly depends on the external
magnetic field. In contrast to studies on the natural ground
state phase of the system and early findings on spin dy-
namics suppression [8,9] at high magnetic field values, we
now find that an external magnetic field not only leads to
adverse effects but can even stimulate spin dynamics. The
spin mixing amplitude is not large for zero magnetic offset
field, but shows a pronounced maximum for finite mag-
netic field values as predicted in [13,17]. The observation
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and understanding of this resonance in self-driven spin
dynamics in quantum gases is central for detailed magnetic
state manipulation. Quantum control for general spin sys-
tems (for F = 1 see [12]) based on this spinor resonance
process might lead to new schemes for spin entanglement
and quantum information applications with spinor gases.
The experimental setup has been described in [6] and the
procedure resembles the one in [13]. We prepare degener-
ate 3Rb ensembles in the F = 2, my = —2 state contain-
ing typically 3 X 103 atoms with a condensate fraction of
=~ (.75 in an optical dipole trap (trapping frequencies
w0y o, = 27 X 14.5:105:600 s 1. A radio frequency
7r/2-pulse of typically 40 ws duration rotates this state to
our initial state /™ (0) = (1/4, 1/2,/6/4,1/2,1/4)T [18].
After holding the sample for a variable time, ¢, at a well
defined magnetic offset field, we switch off the trapping
potential. The population in each spin component is ex-
tracted from absorption images after Stern-Gerlach sepa-
ration during time of flight [5,6,19]. Figure 1 shows the

(0]
el
=2
2
=3 £
] s
E =
=
g 0 50 100
= n/q [ms]
i : Do 20
i f G = EREIN S
S pCER RO S 10
. - REONRRCR JORAN =
'AM‘A\\Q'L?&“\'&\ WOV g
30 0.3 0
3
0 0 50 100
t[ms] 30 q/g<n> g [ms]

FIG. 1 (color online). Left: Temporal evolution of the myp =
0-population for different ratios of quadratic Zeeman and inter-
action energy (see text). Right: Magnetic field dependence of the
amplitude and period of the myr = 0 population as extracted
from a sinusoidal fit to the oscillatory part of the data ((g,;n) =
54571,
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temporal evolution of the mp = O-population in depen-
dence of the relative value of the quadratic Zeeman fre-
quency, ¢, and the mean field spin mixing frequency, g, (n).
The magnetic field dependence is parameterized by g =
p*/wp, With p = ugB/2h and the 3Rb ground state
hyperfine splitting wyg = 27 X 6.835 GHz. The spin-
dependent mean field interaction is proportional to the
density, n, of the sample and for ’Rb dominated by the
parameter g, introduced below.

Our observations show that the whole spin mixing dy-
namics depends critically on the relative size of the ener-
gies associated to the quadratic Zeeman shift and the spin-
dependent mean field interaction. Interestingly, the oscil-
lation amplitude in Fig. 1 is reduced whenever one of these
energies dominates, i.e. in both the quadratic Zeeman
regime (g > g;(n)) and the mean field regime (¢ <
g:1(n)). A maximum occurs close to balanced quadratic
Zeeman and mean field contributions. The important point
is, that these two effects compete with each other. The
quadratic Zeeman effect lifts the energy of the myp = 0
state with respect to the other states, while the mean field
interaction lowers it. More precisely, the phase evolution
due to these energy contributions is occurring in opposite
directions. However, as spin mixing is a coherent process,
this phase determines the direction of spin mixing. The
accumulation of many particles in one state can thus only
happen for slow phase evolution, i.e. close to the balanced
case.

We want to emphasize, that although we consider only
two-body interactions, the spin mixing resonance pre-
sented in this Letter crucially relies on nonlinear mean
field effects like self- and cross-phase modulation, i.e. the
coupling between different spin states depends on the
density and phase of the individual spin components. It is
therefore fundamentally different from the Rabi-like reso-
nance observed in a two-particle system [11], which is
described by a fixed coupling.

For clarity, we will start our analysis by a discussion of
the qualitatively expected features in single mode approxi-
mation (SMA), i.e., neglecting a spatial variation of the
spinor composition, which will be discussed later. In par-
ticular, we present and interpret analytic solutions for the
asymptotic behavior in the regimes of high and low mag-
netic field. Our analysis is based on the spinor evolution
il = aH due to the mean field Hamiltonian [4]:

g1<l’l> <F>2 gz<n>

H=—p(F)—q{4—F)+>— ISI%,
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where F = (F,, F,, F,) is the spin operator, () denotes an
expectation value, and S = (3/2 — {1l + Ll is
the spin-singlet amplitude.

Spin mixing occurs as a consequence of two-particle
collisions and can be classified by the total spin f of the
colliding pair. For F = 2 the allowed values are f =
0,2, 4. The spin mixing interactions are parameterized by
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the coupling coefficients g;
%w [4], using the spin—dependent s-wave scat—
tering lengths a;. The dynamics of ' = 2 spinor conden-
sates will in general be a complex superposition of the
different mixing processes summarized in Table I (we use
the notation (i) for waves/particles in the mp = i state).
This table also lists the relative quadratic Zeeman energy
shifts of the involved states. 3’Rb has the advantage that the
value of g, is very small [20], such that the processes listed
in the lower part of Table I are largely suppressed and can
be neglected in the following [21]. In addition, we will
concentrate on the specific initial state /"(0) used in our
experiments. For the population evolution in the limit of
low magnetic field (¢ < g,(n)), i.e. the “mean field re-
gion,” we find to first order:

3 q
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This mean field dominated evolution is just a sinusoidal
oscillation between the spin components and shows a
magnetic field independent period Ty = 32 <n> as observed
in Fig. 1. Furthermore, these equations indicate that the
oscillation amplitude in this regime should be proportional
to the quadratic Zeeman shift g, which is reflected in Fig. 1.
In the other limit at high magnetic field, i.e. the quadratic
Zeeman regime with g > g;(n), the population evolution
is dominated by the quadratic Zeeman energy and we find:

7P =1 = 55 2fcostzqn - 1+ <=C)

Vet :4{1 N g1221>[3(008(2ft) —1) _Cos(61q2t) —~ 1}}

1242 = 16{1+g12<:>[3(°08(42qt)_1)+3(cos(2qr)—1)
+%H )

The oscillation amplitude in this regime decays with é in
accordance to the data in Fig. 1. However, now several

TABLE I. Four wave mixing processes in F = 2 spinor BEC.
Process Coupling q.Z. energy diff.

0) + (0) & (+1) + (= 1) g1 2q

(+D)+ (1) < (+2) + (0) 81 4q

=D+ (1)< (0)+ (-2 g 4q

D+ (=1 < (+2) +(-2) g1 6q

0) + (0) = (+1) + (= 1) 22 2q

D)+ (=D = (+2) +(-2) 2 6q

0) + (0) & (+2) + (=2) 22 8¢
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frequencies are involved as a result of the different mixing
processes in F' = 2 spin dynamics. The oscillation periods
reflect the different quadratic Zeeman shifts for the pos-
sible g; mixing processes as listed in Table I. For the
chosen initial state, spin mixing is dominated by the
cos(2gt) term in Eq. (3) connected to the (0) + (0) «
(=1) + (+1) process, which has a factor of 4 higher
weight than the cos(4gt) term.

From the above tendencies in the population oscillation,
it is clear, that a maximum amplitude must occur at an
intermediate magnetic field value, i.e. the resonance found
in Fig. 1.

In the following, we will develop some more qualitative
physical insights by an interpretation of the resonance
phenomenon in terms of ~’phase matching” in four wave
mixing (see Fig. 2). First, we note that given the prefactor
1—16, the oscillation amplitude of the mp = £2 wave is
relatively small in both the mean field regime and the
quadratic Zeeman regime. This justifies an approximate
view as a pure (—1) + (+1) < (0) + (0) four wave mixing
process. In contrast to nonlinear optics or four wave mixing
in single component condensates [23], we do not deal with
wave vector or momentum modes [24,25] but with spin
modes, i.e. here the mp = +1 wave and the my = —1
wave couple to 2 times the mp = 0 wave (this view is
justified, as we are considering trapped samples in a single
momentum state). Spin mixing in trapped samples corre-
sponds to degenerate collinear four wave mixing [25] and
(in contrast to single component four wave mixing) in
principle allows infinite interaction times, only limited by
finite temperature effects [9,13,26—28].

In view of the optical analogy, it is obvious, that phase
matching considerations are essential to understand the
resonance in spinor four wave mixing. The important point
is, that the value of the relative phase of the initial and final
waves or spin components determines the direction of
wave mixing. In our case, the (0) wave will be populated

FIG. 2 (color online).

Schematic representation of four wave
mixing in (a) the quadratic Zeeman regime and (b) the mean field
regime. In the upper part, the (0) waves (upper wave) get
populated, while in the lower part, the (+1) and (—1) wave
(lower wave) increase. The wave symbols show the populations
and relative phase of the (0) and (+ 1) and (— 1) waves during one
oscillation cycle going from 1 to 5.

if the combined phase of the (+1) + (—1) waves is ahead
of twice the (0) wave phase,ie.§ = ¢ 1 + ¢_1 —2¢g €
[0... 7] and it will be depopulated if § € [7...27] (mod-
ulo 277).

In general, the relative phase evolution of the spinor
components in spin mixing is highly nontrivial, as in
addition to the quadratic Zeeman energy shifts it depends
on the spin coupling and the spin component populations in
a nonlinear way. We find that for our system, the competi-
tion between mean field driven dephasing (tending to
decrease ) and quadratic Zeeman shift driven dephasing
(tending to increase ) determines the evolution of the
system. Most importantly, the evolution depends on the
relative size of the quadratic Zeeman energy shift and the
maximally achievable mean field shifts, as shown in Fig. 2.
For large magnetic fields, i.e. always negligible mean field
energy shifts, @ will continuously grow, i.e. the (= 1) wave
evolves faster than the (0) wave, and the population trans-
fer shows an oscillatory behavior depending on which
wave is lagging behind at which instant [Fig. 2(a)]. In
this regime, the oscillation period is expected from
Eq. (2) to be given by T Furthermore, the oscillation am-
plitude, which depends on the unidirectional mixing time,
should be proportional to this period. Both these expecta-
tions are confirmed by the data, as shown in the inset of
Fig. 1.

For small magnetic fields, the mean field energy shift
grows with increasing population in the (0) wave, until it
exceeds the quadratic Zeeman shift and thus reverses the
evolution of 6, i.e., the (0) wave will speed up and decrease
its lag behind the (£1) wave, eventually overtaking it. In
this case, 8 will remain confined in the interval [— ... 7]
and oscillate around 8 = 0 [Fig. 2(b)]. In this regime, the
population oscillation amplitude is expected to decrease
with decreasing g, i.e. at lower magnetic field, as less popu-
lation transfer is necessary to create a mean field energy of
the size of the quadratic Zeeman shift. This decrease in
amplitude is also confirmed by the data in Fig. 1.

In the resonance region at intermediate magnetic field,
the relative movement of the (0) and (£1) waves is very
slow, with @ being on the border of oscillation and con-
tinuous increase. This leads to long time unidirectional
spin mixing and thus maximum amplitude.

We want to point out that also the initial direction of spin
mixing increasing the (0) wave amplitude as observed in
Fig. 1 can be explained by simple arguments. The chosen
initial state /" has zero phase shift # = 0 and shows no
mean field dephasing between the (1) and (0) waves. This
is due to the fact, that it originates from the fully stretched
(—2) eigenstate subjected to a 90° rotation. As the mean
field part of the Hamiltonian is invariant under rotations,
{™ stays a mean field eigenstate. Consequently, the qua-
dratic Zeeman energy shift will always cause the (*£1)
wave to evolve faster than the (0) wave or in other words,
0 will initially always grow. The transfer of particles going
in the direction of the wave lagging behind will thus result
in an initial increase of the (0) wave (see Fig. 2).
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FIG. 3. (a) deviation (rms of mp = 0 population) of SMA

theory fit (g;(n) = 54 s~! fixed) from our data (Fig. 1). The
abscissa specifies the time range over which the fit was per-
formed. (b) two examples of fits compared to data.

In addition to the qualitative understanding of the ten-
dencies observed in Fig. 1 within the SMA, a quantitative
comparison allows us to deduce the validity limits of this
approximation. Although the initial state is prepared in a
single spatial mode, its size in the weak trap direction of
~100 pwm is much larger than the g;-spin healing length
&, =h/2gnm = 2.6 um. Similar to the simulations in
[28] and the experiment in [10], we thus expect spatial
structures to form after some time due to local differences
in spin dynamics. Indeed, we observe the breakdown of the
SMA, indicated by a strong damping of the oscillation of
the (spatially averaged) populations at low g. However, for
high g, the spinor oscillations last significantly longer. This
can be understood as the mean field spinor evolution is
characterized by a density dependent coupling constant
g1{n), while in the quadratic Zeeman regime, it is deter-
mined by ¢. For mean field driven spin dynamics, the
higher density parts of the spinor condensate will thus
dephase relative to the lower density parts, and population
oscillations in the total fractions will be washed out.

In Fig. 3(a), we study the rms deviation of the measured
spinor evolution from best-fit theoretical curves based on
the SMA as a function of evolution time. In the mean field
regime, the SMA breaks down after =5 ms (squares),
while there is a near perfect agreement over more than
20 ms in the quadratic Zeeman region (circles). This
behavior is also reflected in the corresponding time se-
quences and fit curves shown in Fig. 3(b). Our most im-
portant observation in this respect is that even for
condensate sizes much above the spin healing length, the
single mode approximation works remarkably well once
the quadratic Zeeman effect dominates the relative phase
evolution.

In conclusion, we have investigated a magnetically tun-
able resonance in coherent spin dynamics and have ana-
lyzed this phenomenon in terms of phase matching

considerations, which are applicable to general values of
total spin. In the future, this resonance will allow the
controlled use of spin dynamics to fully convert one spinor
state into another, even with local control, by shifting in
and out of the validity range of the single mode approxi-
mation. These possibilities open new perspectives for spa-
tiotemporal tailoring of the spinor condensate wave
function, e.g. for the creation of highly nonclassical spin
states with spatially varying degree of entanglement.
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