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We investigate quantum phase transitions (QPTs) in spin chain systems characterized by local
Hamiltonians with matrix product ground states. We show how to theoretically engineer such QPT points
between states with predetermined properties. While some of the characteristics of these transitions are
familiar, like the appearance of singularities in the thermodynamic limit, diverging correlation length, and
vanishing energy gap, others differ from the standard paradigm: In particular, the ground state energy
remains analytic, and the entanglement entropy of a half-chain stays finite. Examples demonstrate that
these kinds of transitions can occur at the triple point of ‘‘conventional’’ QPTs.
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A considerable part of modern condensed matter physics
is devoted to the study of matter near zero temperature. In
particular, zero-temperature quantum phase transitions
(QPTs) [1], as observed in cuprate high-temperature super-
conductors and heavy fermion materials, have attracted
enormous attention. Although an adaptation of the classi-
cal Landau-Ginzburg theory successfully describes some
of these phase transitions, it is manifest that this concept is
in general too narrow to cover all the fascinating aspects of
the quantum world [2]. A complete and rigorous quantum
mechanical description is, however, burdened by the noto-
rious complexity of quantum correlations in highly en-
tangled many-body systems.

The fields of condensed matter and quantum information
theory study the behavior of quantum many-body systems
by using complementary methodologies. Whereas the typi-
cal starting point in condensed matter theory is a
Hamiltonian, from which states emerge as ground states
(GSs) or excitations, quantum information theory deals
primarily with quantum states, from which corresponding
Hamiltonians may be constructed. For spin chains this
point of view can be traced back to the seminal works on
the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [3] and
finitely correlated states [4], and it has recently been suc-
cessfully resumed in various works on matrix product
states (MPSs) [5]. This led to new powerful numerical
algorithms [6–8] accompanied by a better understanding
of their efficiency [9], and new insights in renormalization
group transformations [10] and sequential quantum gener-
ators [11].

Here we investigate QPTs in systems represented by
MPSs by following the quantum information approach.
Our work generalizes the findings of [4,12], which already
indicated the possibility of such transitions in MPS sys-
tems, in quasiexactly solvable models. We show how to
engineer QPT points between phases whose correlations or
symmetries we choose a priori. The corresponding orders
can be of local type and/or of a more subtle hidden non-
local character. The main observation behind is that, for the

systems under consideration, a singularity in a �D�
1�-dimensional transfer operator leads to a QPT in the
corresponding D-dimensional quantum system. Although
these findings hold for arbitrary D, we focus on D � 1,
where a general discussion is possible on full analytic
grounds.

In fact, every state, in particular, every GS, of a finite
system can be represented as a MPS [4,6]. The power of
this representation—and with it the power of density
matrix renormalization group (DMRG)—stems from the
fact that in many cases a low-dimensional MPS already
leads to a very good approximation of the state [9]. From
such a low-dimensional MPS one can in turn construct a
parent Hamiltonian from which it arises as an exact GS.
We will study the dependence of correlation functions of
such systems on a smoothly varying parameter g and show
that singularities can appear, reminiscent to those arising in
known examples of QPTs. They appear only in the ther-
modynamic limit and are accompanied by diverging cor-
relation lengths and vanishing energy gaps.

Some of the derived properties of MPS QPTs do, how-
ever, hardly fit within the conventional picture of QPTs in
D � 1 spin systems: (i) At the QPT point g � gc, the GS
energy density e0 is analytic (Fig. 1). (ii) The entropy of a
half-chain remains finite as g! gc, which reflects the fact
that MPS QPTs cannot be described in terms of conformal
field theory. In fact, a lot of attention has recently been
devoted to the entanglement entropy [13,14], resulting in
the observation that the crossing of a QPT point typically
coincides with the divergence of this entropy. The discus-
sion below, however, shows that this is not the case for
MPS QPTs in D � 1. (iii) Although the breaking of a
discrete symmetry can be engineered, MPS QPTs can
occur without spontaneous symmetry breaking since for
g � gc the GS is typically unique.

A remark on the notion of (quantum) ‘‘phase transi-
tions’’ is in order. In many textbooks a nonanalyticity in
the GS energy density e0 is used as the defining property of
a QPT [1]. An alternative definition [15] follows the ex-
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perimental signature of phase transitions—observable dis-
continuities, e.g., in local observables or correlation func-
tions. In many cases these two definitions coincide [15];
however, MPS QPTs are phase transitions only according
to the second definition.

Singularities in MPSs.—Consider a MPS which is up to
normalization given by

 j i �
Xd

i1;...;iN�1

tr�Ai1 � � �AiN �ji1; . . . ; iNi; (1)

where fAig is a set of d D�D matrices, d is the Hilbert
space dimension corresponding to one site in the chain, and
D is the dimension of the bonds, when we think of the state
in the valence-bond picture. The state in Eq. (1) is transla-
tional invariant on a ring of length N; it has reflection
symmetry if Ai � ATi , permutation symmetry if �Ai; Aj� �
0, and time reversal symmetry if the Ai’s are real. Also
other local symmetries [e.g., SU�2�, Z2] can be enforced by
imposing appropriate constraints on the Ai’s [4,16].

In the following we will consider systems where the
matrices Ai depend on a single real parameter g. It is
important to note that if the Ai depend on g in an analytic
or continuous way, then so will its parent Hamiltonian
constructed below. Correlation functions form consecutive
sites are given by

 hS1 � � � Smi �
tr�EN�m1 ES1

� � �ESm�

tr�EN1 �
; (2)

 ES �
Xd
i;j�1

hijSjjiAj 	 �Ai: (3)

Here Si is any observable acting on the ith site and the bar
denotes complex conjugation. For simplicity, we will focus
on the generic case where the transfer operator E1 is
diagonalizable and nondegenerate for g � gc. Taking the
thermodynamic limit (N ! 1) only the right jri and left jli
eigenvectors of E1 ’s largest eigenvalue �1 survive in
Eq. (2). With the normalization hljri � 1 this leads to

 hS1 � � � Smi � hljES1
� � �ESm jri=�

m
1 : (4)

Hence, if for some g � gc there is a level crossing in the
largest eigenvalues of E1, then there will typically be a
discontinuity in the correlation functions (or their deriva-
tives), even though the Ai’s and with them the E’s are
analytic in g. Needless to say, the same argumentation
holds for every observable with finite support.

A trivial example showing that discontinuities of any
order n are possible is given by (D � d � 2)

 A1 �
1 0
0 1
 g

� �
; A2 �

gn 0
0 0

� �
: (5)

Here, all derivatives @kghSiSi
1i of order k < n will be
continuous at g � gc � 0, whereas the nth order deriva-
tive, e.g., of h�xi turns out to be discontinuous.

Let us now discuss the properties of a general MPS in the
vicinity of a transition point gc. The decay of two-point
correlations hSiSi
li can be obtained from Eq. (2) by
setting ES2

� � � � � ESm�1
� E1 with m � l
 1 and ex-

ploiting the Jordan decomposition of the transfer operator.
This leads to

 hSiSi
li � hSiihSi
li �
��������
�2

�1

��������
l�1
; (6)

where �2 is the second largest eigenvalue of the transfer
operator. As the coupling strength approaches its QPT
point value, g! gc, we get j�2j ! j�1j. Then, the corre-
lation length � � 1= lnj�1=�2j diverges and one typically
obtains long-range correlations at the transition point (see
example 1 below). Note that despite the diverging correla-
tion length there is no power-law decay at the transition
point as El�1

1 can give rise only to correlations which decay
exponentially in l or are asymptotically constant (this can
be different for D> 1 or D � 1 [17]).

Since a lot of attention has recently been devoted to the
relation between criticality and the scaling of the entangle-
ment entropy [13], we give now an explicit formula for the
latter. In fact, in recent works QPT points seem to be
intimately connected with a logarithmic diverging behav-
ior of the entropy of a block of consecutive spins when
considered as a function of the block size. However, this is
not the case for the class of QPTs discussed in the present
work. The entropy of an asymptotically large block of a
MPS can be calculated exactly by exploiting the freedom
in the Ai’s to fix the gauge

P
iAiA

y
i � 1,

P
iA
y
i %Ai � %,

where % is a density matrix acting on CD. By the renor-
malization group arguments of [4,10] the spectrum of a
large block converges to the spectrum of %	2 such that the
entropy becomes 2S�%� � �2 tr%log2%. In particular, the
entropy never exceeds 2 logD, irrespective of how close the
system is to a QPT point. This immediately implies that
states exhibiting a diverging growth of the entanglement
entropy cannot be described by MPSs with finite D.
Moreover, following [18], the absence of a logarithmic
divergence (and algebraic correlations) implies that MPS

ggc

E

FIG. 1. Energies for the ground and first excited state as a
function of g. In contrast to other QPTs the GS energy of a MPS
Hamiltonian remains (by construction) analytic at the QPT point
g � gc. Nevertheless, the spectral gap vanishes and the correla-
tion length diverges. Moreover, the nonanalytic change of the GS
at gc is reflected by an observable nonanalyticity of certain local
expectation values.
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QPTs cannot be described in terms of conformal field
theory.

Higher dimensions.—Note that in the above D � 1 case
the QPT is traced back to a level crossing in the operator
E1, which acts only on a single site, i.e., in dimension D�
1. However, if the transfer operator itself has a spatial
substructure, we are led to a QPT in a higher dimensional
system. To be more specific, consider a D-dimensional
cubic lattice of size N1 � � � � � ND with periodic bound-
ary conditions. A generalization of (1), the so-called pro-
jected entangled pair state (PEPS) [19], is then obtained by
replacing the bilinear forms Ai by tensors of order 2D, i.e.,
Ai:�C

D�	2D ! C and the matrix product by a tensor con-
traction according to the edges of the lattice. As we can
interpret the D-dimensional lattice as a chain of D� 1
dimensional systems we can introduce a transfer operator
E01 for this chain by contracting all

QD
i�2 Ni operators E1

on a D� 1-dimensional sublattice. In this way we are
back to the one-dimensional scenario described above
with the difference that the problem of calculating the
largest eigenvalue of E01 has to be tackled numerically
(e.g., by DMRG or PEPS algorithms). Particular instances
of such transitions were discussed in [20], where power-
law decaying correlations could be determined using
Monte Carlo methods. Note that by construction all critical
GSs obtained in this way obey an area law for the entan-
glement entropy [14]. A method for deriving analytic
results for particular higher dimensional instances is pro-
vided in [17].

The Hamiltonians.—Following the works on the AKLT
model and finitely correlated states one can always con-
struct a local Hamiltonian such that a given MPS is its GS:
since the reduced state density operator �k corresponding
to k sites of a MPS has at most rank D2, it has a null-space
whenever k > logD2= logd. Therefore, j i is the GS of any
Hamiltonian which is a sum of (local) positive operators
supported in that null-space. In particular, it is the GS of
the Hamiltonian

 H �
X
i

�i�Pk�; (7)

with Pk being the projector onto the null-space of �k and �i
its translation to site i. By construction the GS energy is
always zero; i.e., it is evidently analytic in g.

Let us now see in which casesH depends analytically on
g and, moreover, is such that j i is its unique GS for g �

gc. Consider to this end the operator

 R �A	k�1D 	!	�k�1� 	 1D�A
y	k; (8)

where ! �
PD
i;j�1 jiiihjjj and Aj�;�i �

P
i�Ai��;�jii.

Note that, if Ai depends analytically on g, R also depends
analytically on g. It is evident from the valence-bond
construction of the MPS that, in general, range��k� �
range�R�. However, if both eigenvectors jri and jli have
full Schmidt rank, then a straightforward calculation shows
that range��k� � range�R�. Hence, if this Schmidt rank

condition is satisfied on both sides of gc (which is generi-
cally the case), then H�g� indeed depends smoothly on g.

It was proven in [4,16] that the GS of Hamiltonians of
the form (7) is unique if the largest eigenvalue of E1 is
nondegenerate (i.e., g � gc), rank��k� � D2, and

 range ��k� 	 Cd \ Cd 	 range��k� � range��k
1�: (9)

It is also shown there that the latter condition is always
satisfied if we replace k by k
 1, i.e., take H �P
i�i�Pk
1�.
The analyticity of H together with the uniqueness of its

GS for g � gc immediately imply that a nonanalyticity in
the expectation values can only be caused by a vanishing
energy gap at gc. Note that a degeneracy in the GS is
equivalent to a degeneracy in E1. This means that there
is no spontaneous symmetry breaking in one of the phases,
unless j�1j � j�2j for an entire interval (e.g., for g  gc).
However, for a degenerate E1 arbitrary broken discrete
symmetries are possible [16].

Examples.—We will now consider some examples in
more detail. By imposing constraints on the matrices Ai,
we can thereby engineer systems having desired properties
(symmetries, orders, discrete symmetry breaking, etc.).

Example 1: Three-body interactions. We start by con-
sidering the caseD � d � 2, i.e., A1, A2 being two-by-two
matrices. By the arguments above every such state has a
parent Hamiltonian with local three-body interactions. In
fact, many of these Hamiltonians are similar to ones which
appear or can be realized in optical lattices [21]. We
construct an example with Z2 symmetry by imposing the
existence of a similarity transformation which inter-
changes A1 and A2, i.e., X�1A1X � A2 and X�1A2X �
A1. This is indeed the case if we choose

 A1 �
0 0
1 1

� �
; A2 �

1 g
0 0

� �
; and X �

0 g
1 0

� �
:

The corresponding transfer operator E1 has largest eigen-
values 1� g leading to a singularity at g � gc � 0. A
straightforward calculation shows a discontinuity in the
first derivative of h��i �

�
i
1i�� � x; y; z�, whereas all two-

point expectation values are continuous. Moreover, the
magnetization in the x direction can serve as a signature
of the phase transition, although it is not an order parameter
in the usual sense since there is no corresponding broken
symmetry. Whereas for g > 0 we have h�xi � 4g=�1

g�2, it vanishes for g < 0.

At the QPT point gc the state is a Greenberger-Horne-
Zeilinger (GHZ) state; i.e., two-point correlations become
independent of the distance. For g � �1 it is equal to the
cluster state [22], and for g � 1 all spins point in the x
direction. The parent Hamiltonian is Z2 symmetric:

 H �
X
i

2�g2 � 1��zi�
z
i
1 � �1
 g�

2�xi ; (10)

 
 �g� 1�2�zi�
x
i
1�

z
i
2: (11)
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Hence, it is a combination of an Ising interaction with
transverse magnetic field (10) and a cluster state
Hamiltonian (11). Since a constant term was omitted, the
GS energy density is e0 � �2�1
 g2�, and one can read-
ily check condition (9) implying that the GS is indeed
unique for g � gc � 0. The above Hamiltonian can be
embedded into a two-parameter family, which is up to a
global factor of 2�1
 g2�,

 H��; h� � �
X
i

1
 �
2

�xi �
1� �

2
�zi�1�

x
i�

z
i
1


 h�zi�
z
i
1;

and can be mapped onto a system of noninteracting
Fermions by a Jordan-Wigner transformation. Moreover,
H��; h� can be mapped onto the XY model via a Kramers-
Wannier duality transformation [23]. This in turn exhibits
second order QPTs on the lines h � �1 and � � 0 for h 2
��1; 1�. The path parametrized by g is given by �2 
 h2 �
1 (the disorder line in the XY model). Hence, the MPS
transition occurs at the triple point of ‘‘conventional’’
QPTs exhibiting algebraically decaying correlations, di-
verging entanglement entropies [23], and satisfying both
QPT definitions.

Example 2: Two-body interactions. The previous ex-
ample corresponded to the case of a local order parameter.
We now discuss an example with nonlocal string order. To
this end, consider D � 2, d � 3, i.e., states of a spin-1
chain which are GSs of nearest-neighbor interactions. The
most popular MPS in this class is certainly the GS of the
spin-1 AKLT model, which exhibits a hidden (string)
order. In fact, this state can be embedded into a one-
parameter family with MPS QPT. If we choose fAig �
f��z; �

�; g�
g, then E1 has eigenvalues �1 and 1� g
leading to a diverging correlation length for g! gc � 0.
Moreover, the first derivative of hSzi has a discontinuity at
gc � 0, where hSzi ! 1, i.e., the state becomes ferromag-
netic. For g � �2 we get AKLT states, which merely
differ by local unitary transformations. For g! �1 the
GS becomes the Néel GHZ state �j "#" ���i
j #"# ���i�=

���
2
p

.
As already shown in [4] (with a different parametrization
for g < 0), the corresponding Hamiltonian is rotationally
symmetric in the XY plane, gapped with nondegenerate GS
(unless g � gc), and has the form

 H �
X
i

�2
 g2� ~Si ~Si
1 
 2� ~Si ~Si
1�
2 
 2�4� g2��Szi �

2

� �g
 2�2�SziS
z
i
1�

2 
 g�g
 2�fSziS
z
i
1; ~Si ~Si
1g
:

(12)

Conclusion.—MPSs provide a convenient playground for
investigating novel types of quantum phase transitions that
do not fit in the traditional framework. We provided various
examples of such QPTs and it is easy to construct many
more: given two predetermined MPS and associated parent
Hamiltonians, choose an interpolation between the two. If
on the chosen path the transfer operator exhibits a level

crossing in the largest eigenvalue, then the system under-
goes a QPT. MPS QPTs may serve as a clarifying theo-
retical test bed and as an alternative model for the
description of QPTs with atypical properties (which might
be realized in optical lattices [21]).

The authors are grateful to the Benasque Center for
Science, acknowledge support by the DFG (SFB 631),
and thank D. Perez-Garcia for valuable discussions.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, Cambridge, 1999).

[2] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature
(London) 413, 804 (2001); T. Senthil, A. Vishwanath, L.
Balents, S. Sachdev, and M. P. A. Fisher, Science 303,
1490 (2004).

[3] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki,
Commun. Math. Phys. 115, 477 (1988).

[4] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun.
Math. Phys. 144, 443 (1992).
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