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An exactly-solvable model for the decay of a metastable state coupled to a semi-infinite, tight-binding
lattice, showing large deviations from exponential decay in the strong coupling regime, is presented. An
optical realization of the lattice model, based on discrete diffraction in a semi-infinite array of tunneling-
coupled optical waveguides, is proposed to test nonexponential decay and for the observation of an optical
analog of the quantum Zeno effect.
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The understanding and control of the decay process of
an unstable quantum state has long been a subject of debate
in different areas of physics. Though an exponential law is
known to be a good phenomenological fit to many decay
phenomena, quantum mechanics ensures that the survival
probability P�t� is definitely not exponential at short and
long times (see, e.g., [1–3]). In particular, at short times
P�t� always shows a parabolic decay, i.e. dP=dt! 0 as
t! 0. These universal features have been extensively in-
vestigated in some specific models describing the tunnel-
ing escape of a particle through a potential barrier [1,4,5],
or in the framework of the exactly-solvable Friedrichs-Lee
Hamiltonian [6–10], which describes the decay of a dis-
crete state coupled to a continuum. The short-time features
of the decay process have attracted much attention because
they can lead, under certain conditions, to either the decel-
eration (Zeno effect) or the acceleration (anti-Zeno effect)
of the decay by frequent observations of the system (see,
e.g., [8,9,11] and references therein). Evidences of non-
exponential decay features at short times and the observa-
tion of the related Zeno and anti-Zeno effects have been
reported in recent experiments on quantum tunneling of
trapped sodium atoms in accelerating optical lattices [12].
Similar effects have been proposed to occur for quantum
tunneling in analogous macroscopic systems, such as
Josephson junctions [13].

In this Letter, a novel and exactly-solvable model of
nonexponential decay of an unstable state tunneling
coupled to a tight-binding lattice is presented. A simple
and experimentally accessible realization of the model,
based on discrete diffraction of photons in an array of
optical waveguides [14], is proposed along with an optical
analog of the quantum Zeno effect. To set our model in a
general context, we consider a semi-infinite lattice de-
scribed by the tight-binding Hamiltonian [Fig. 1(a)]:

 HTB � �@
X1
n�1

�n�jnihn� 1j � jn� 1ihnj�; (1)

where jni (n � 1) is the state localized at the n-th site of
the lattice and �n is the hopping amplitude between ad-
jacent sites jni and jn� 1i. We assume that for n � 2, the

lattice is periodic so that, after a rescaling of time t, we may
assume �n � 1 for n � 2. The boundary site j1i is then
coupled to the periodic lattice by a hopping amplitude
�1 � �, which is assumed to be smaller than 1. The
tight-binding Hamiltonian (1) has been often used as a
simple model to describe coherent transport properties
and tunneling phenomena in different physical systems,
including semiconductor superlattices [15], arrays of
coupled quantum dots [16], Bose-Einstein condensates in
optical lattices [17], and arrays of optical waveguides
[14,18]. In particular, model (1) can be derived from the
continuous Schrödinger equation
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@x2 � V�x� ; (2)

with a potential V�x� �
P
1
n�1 Vw�x� xn� describing a

semi-infinite chain of identical symmetric quantum wells
Vw�x� [Vw��x� � Vw�x� and Vw�x� ! 0 for x! 1],
placed at distances xn�1 � xn � a for n � 2 and x2 �
x1 � a0 > a [see Fig. 1(a)]. If the individual potential
well Vw�x� supports a single bounded mode ’�x� of energy

FIG. 1 (color online). (a) The semi-infinite tight-binding lat-
tice model. (b) Optical realization of the tight-binding model
based on an array of coupled optical waveguides. (c) Refractive
index profile n�x� � ns of the waveguide array used in the
numerical simulations (parameter values are ns � 2:138, � �
1:55 �m, �n � 2:4� 10�3, and a � 12 �m).
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E and if tunneling-induced coupling of adjacent wells is
weak, Eq. (2) can be reduced to the discrete model (1) by
means of a tight-binding [17,19] or a variational [20]
analysis. After expanding the state j i of the system as
j i �

P
ncn�t� exp��iEt=@�jni, where jni � ’�x� xn� is

the localized state at the n-th well in the chain, in the
nearest-neighbor approximation from Eq. (2), one can
derive the following equations of motion for cn:

 i _c1 � ��c2; i _c2 � �c3 � �c1;

i _cn � ��cn�1 � cn�1� for n � 3;
(3)

where � ’ �
R
dx’�x� a0�Vw�x�’�x�	=�

R
dx’�x�

a�Vw�x�’�x�	 is the normalized hopping amplitude be-
tween states j1i and j2i. For � � 0, i.e. for a0=a! 1,
the site j1i is decoupled from the other lattice sites, and if
the system is initially prepared in state j1i, it does not
decay; as � is increased, tunneling escape is allowed,
and state j1i becomes metastable. The limits �! 0 and
�! 1 correspond to the weak and strong coupling re-
gimes, respectively. The occupation probability of site j1i
at time t is given by P�t� � jc1�t�j

2. Following Gamow’s
approach to quantum tunneling decay [4], the ‘‘natural’’
decay rate �0 of state j1i, which would correspond to an
exponential decay law P�t� � exp���0t�, can be readily
calculated by looking for complex energy eigenfunctions
of HTB with outgoing boundary conditions (Gamow’s
states), yielding

 �0 � 2�2�1� �2��1=2: (4)

However, the exponential decay law turns out to be incor-
rect, especially in the strong coupling regime �! 1 where
it fails to reproduce the exact decay law at any time scale.
According to Ref. [9], one can introduce an effective decay
rate �eff�t� by the relation �eff�t� � ��1=t� lnjc1�t�j

2, so
that any deviation of �eff�t� from �0 is a signature of
nonexponential decay. In addition, the eventual intersec-
tion �eff�t� � �0 rules the transition from Zeno to anti-
Zeno effects for repetitive measurements [9]. In order to
determine the exact law for the survival probability P�t�,
one has to calculate the eigenfunctions of (1) and construct
a suitable superposition of them corresponding, at t � 0, to
a particle localized in the well j1i, i.e. to cn�0� � �n;1. The
tight-binding Hamiltonian (1) has a continuous spectrum
of eigenfunctions [21] which can be calculated by separa-
tion of variables and correspond to cn�t� � un�Q��
exp�i��Q�t	, where ��Q� � 2 cosQ is the dispersion
curve of the tight-binding lattice band, ��<Q<�
varies in the first Brillouin zone, and

 u1 � ��1� r�=�2 cosQ�;

un � exp��iQ�n� 2�	 � r exp�iQ�n� 2�	 �n � 2�:

(5)

In Eq. (5), r � r�Q� is the reflection coefficient for Bloch
waves at the boundary of the semi-infinite lattice and reads
explicitly

 r�Q� � �
�2 � 2 cosQ exp�iQ�

�2 � 2 cosQ exp��iQ�
: (6)

To study the decay process, we construct a superposition of
the eigenstates, cn�t� �

R
�
�� dQF�Q�un�Q� exp�i��Q�t	,

where the spectrum F�Q� is determined by the initial
conditions cn�0� � �n;1. Using an iterative procedure that
will be described in detail elsewhere, one can show that the
searched spectrum is given by F�Q� � ��2����1�
��2 exp�iQ� � 2 cosQ	=��2 � 1� exp�2iQ�	. Therefore
the exact decay law for the occupation amplitude of site
j1i is given by

 c1�t� �
1

2�

Z �

��
dQ exp�2it cosQ�

1� exp��2iQ�

1� �2 exp��2iQ�
;

(7)

where � 
 �1� �2�1=2. The short-time decay of jc1�t�j
2 is

obviously parabolic; the long-time behavior of c1�t� can be
calculated by use of the method of the stationary phase,
yielding the oscillatory power-law decay

 c1�t� �
1����
�
p

1� �2

�1� �2�2
1

t3=2
cos�2t� 3�=4� as t! 1:

(8)

In order to extract the exponential decay part from c1�t�,
after setting z � exp�iQ�, it is worth rewriting Eq. (7) as an
integral in the complex plane

 c1�t� �
1

2�i

I
�
dz exp

�
it
�
z�

1

z

��
z2 � 1

z�z2 � �2�
; (9)

where the contour � is the unit circle jzj � 1. The integral
(9) can be evaluated by use of the residue theorem. Note
that for � � 1, there is only one singularity at z � 0, and
from residue theorem one obtains

 c1�t� � �1=t�J1�2t�; (10)

which shows that, in the strong coupling regime, the decay
greatly deviates from an exponential law at any time scale.
For �< 1, there are three singularities, at z � 0 and z �
�i�, inside the contour �. The residue associated with the
singularity z � �i� yields an exponentially-decaying
term, whereas the sum of residues at z � 0 and z � i�
yields a bounded function s�t�, which can be written as a
Neumann series. Precisely, one can write

 c1�t� �
����
Z
p

exp���0t=2� � s�t�; (11)

where �0 is the natural decay rate as given by Gamow’s
theory [Eq. (4)],

����
Z
p

 ��2 � 1�=�2�2�, and

 s�t��J0�2t��
�
1�

1

�2

��
1

2

X1
l��1

Jl�2t�

�l
�
X1
l�0

J2l�2t�

�2l

�
(12)

is the correction to the exponential decay term. The de-
composition (11) is meaningful in the weak coupling re-
gime (�! 0) since, in this limit, one can show that the
contribution s�t� is small and of order ��2. The appear-
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ance of nonexponential features in the decay dynamics
when approaching the strong coupling limit is clearly
shown in Fig. 2, where the numerically-computed behavior
of the effective decay rate �eff�t� is shown for a few values
of �, together with the temporal evolution of amplitudes
jcn�t�j. The appearance of strong oscillations in the �eff�t�
curve when the coupling strength increases is a clear
signature of an oscillatory decay dynamics which sets in
even at intermediate time scales. Consider now the case of
projective measurements of state j1i at time intervals t �
�. In the weak coupling limit, where the decay deviates
from an exponential law solely at short and long times,
deceleration of the decay (Zeno effect) occurs for � < �,
where � is the smallest root of the equation �eff��

� � �0

[9]; for instance, for parameter values of Fig. 2(a), one has
� � 85. In the strong coupling regime [Fig. 2(c)], the
decay is highly oscillatory, and acceleration of the decay
(anti-Zeno effect) may be observed for a value of � close
to, for example, the first peak of �eff , where �eff��� is larger
than �0; for instance, for parameter values of Fig. 2(c),
anti-Zeno effect may be observed for �� 2:34. In this case,
repetitive observations correspond to suppression of the
oscillatory tails in the decay process.

Physical realizations of the tight-binding model (1) are
provided by electron transport in a chain of tunneling-
coupled semiconductor quantum wells [15] or by discrete
diffraction of photons in a semi-infinite array of tunneling-
coupled optical waveguides, where the temporal variable t

of the quantum problem is mapped into the spatial propa-
gation coordinate z along the array [Fig. 1(b)]. Here we
consider in detail the latter optical system since it shows
several advantages: (i) Visualization of the tunneling dy-
namics is experimentally accessible [18,22], and a quanti-
tative measure of light decay can be done by, for example,
Near-Field Scanning Optical Microscopy (NSOM) tech-
niques [23]; (ii) Preparation of the system on state j1i is
simply realized by initial excitation of the boundary wave-
guide by a focused laser beam; (iii) Light diffraction ex-
periments in waveguide arrays have successfully
confirmed the reliability of the tight-binding model
[14,18]; (iv) Transport of photons instead of charged par-
ticles (e.g. electrons) avoids the occurrence of dephasing or
many-body effects, making waveguide-based optical struc-
tures an ideal laboratory for the observation of several
analogs of coherent quantum dynamical effects (see, e.g.
[22]). Beautiful optical analogs of Bloch oscillations
[14,18,22], Landau-Zener tunneling [22], adiabatic stabi-
lization of atoms in strong fields [24], and coherent control
of quantum tunneling [25] have been indeed reported in
recent optical experiments.

Light propagation in the waveguide array is described by
Eq. (2) in which the temporal variable t is replaced by the
spatial propagation coordinate z, @ � �=�2�� is the re-
duced wavelength of photons, m � ns is the refractive
index of the array substrate, V�x� ’ ns � n�x�, and n�x�
is the array refractive index profile (see, e.g., [24,25]). As
an example, Fig. 3 shows the discrete diffraction patterns
and corresponding behavior of light trapped in waveguide
j1i as obtained by a numerical analysis of Eq. (2) using a
standard beam propagation method with absorbing bound-
ary conditions [26]; initial condition corresponds to exci-
tation of waveguide j1i in its fundamental mode, i.e.

FIG. 2 (color online). Left: Behavior of the effective decay
rate �eff and amplitude jc1�t�j (insets) versus time. Right: Grey
scale image of jcn�t�j. In (a), � � 0:3; in (b), � � 0:5; in
(c), � � 0:9. The horizontal dashed lines are the natural decay
rate �0.

FIG. 3 (color online). Tunneling decay dynamics in a L �
50 mm-long, semi-infinite waveguide array (left column) and
corresponding discrete diffraction patterns (right column).
(a) Weak coupling regime [a � 12 �m and a0 � 16 �m, cor-
responding to �� 0:28]; (b) strong coupling regime [a �
12 �m and a0 � 12:5 �m, corresponding to �� 0:86].
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 �x; 0� � ’�x�. The refractive index profile of the semi-
infinite array used in the simulations is plotted in Fig. 1(c)
for parameter values which typically apply to lithium-
niobate waveguides [24]. Note that, as � is increased,
nonexponential features are clearly visible. However, as
compared to the tight-binding results, the peaked structure
of �eff�t� obtained from the continuous model (2) is
smoothed [compare, e.g. Fig. 2(c) and 3(b)]. In order to
reproduce the optical analog of the quantum Zeno effect in
the waveguide system, one can adopt the array configura-
tion shown in Fig. 4(a), in which a straight waveguide j1i is
periodically coupled, at equally-spaced distances z � �, to
semi-infinite arrays of finite length � placed on alternating
sides of the waveguide. At each section where the lateral
arrays end, light trapped in the interrupted waveguides is
scattered out, and solely a negligible fraction of it will be
recoupled into the waveguides at the next section of the
array. Therefore, at planes z � �; 2�; 3�; . . . one can as-
sume, at first approximation, that a collapse of the state
 �x; z� into the fundamental mode ’�x� of waveguide j1i
occurs, thus simulating the ‘‘wavepacket collapse’’ of an
ideal quantum measurement. An example of deceleration
of the decay via tunneling in the alternating array, analo-
gous to the quantum Zeno effect, is shown in Figs. 4(b) and
4(c).

In conclusion, an exactly-solvable model for the tunnel-
ing escape dynamics of a metastable state coupled to a
tight-binding lattice has been presented, and its optical
realization—including an optical analog of the quantum
Zeno effect—has been proposed in an array of tunneling-
coupled optical waveguides.
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FIG. 4 (color online). (a) Schematic of a waveguide array for
the observation of the optical Zeno effect. (b) Numerically-
computed behavior of mode amplitude jc1j trapped in waveguide
j1i (solid curved line) versus propagation distance in a L �
20 mm-long array for ��4 mm, a0 � 16 �m, and a � 12 �m.
The dashed curved line is the behavior corresponding to Fig. 3(a).
(c) Grey scale discrete diffraction pattern along the array.
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