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We present a method to investigate the kinetics of protein folding and the dynamics underlying the
formation of secondary and tertiary structures during the entire reaction. By writing the solution of the
Fokker-Planck equation in terms of a path integral, we derive a Hamilton-Jacobi variational principle from
which we are able to compute the most probable pathway of folding. The method is applied to the folding
of the Villin headpiece subdomain simulated using a Go model. An initial collapsing phase driven by the
initial configuration is followed by a rearrangement phase, in which secondary structures are formed and
all computed paths display strong similarities. This completely general method does not require the prior
knowledge of any reaction coordinate and is an efficient tool to perform simulations of the entire folding
process with available computers.

DOI: 10.1103/PhysRevLett.97.108101 PACS numbers: 87.14.Ee, 83.10.Mj, 87.15.Cc

Understanding the kinetics of protein folding [1] and the
dynamical mechanisms involved in the formation of their
structures in an all-atom approach involves simulating a
statistically significant ensemble of folding trajectories for
a system of �104 degrees of freedom. Unfortunately, the
existence of a huge gap between the microscopic time
scale of the rotational degrees of freedom �10�12 s and
the macroscopic time scales of the full folding process
�10�6–101 s makes it extremely computationally chal-
lenging to follow the evolution of a typical �100-residue
protein for a time interval longer than a few tens of
nanoseconds.

Several approaches have been proposed to overcome
such computational difficulties and address the problem
of identifying the relevant pathways of the folding re-
action [2]. Unfortunately, these methods are either af-
fected by uncontrolled systematic errors associated to
ad hoc approximations or can be applied only to small
proteins with a typical folding time of the order of a few
nanoseconds (fast folders). In this Letter, we present a
novel approach to overcome these difficulties: We adopt
the Langevin approach and devise a method to rigor-
ously define and practically compute the most statisti-
cally relevant protein folding pathway. As a first explor-
atory application, we have studied the folding transi-
tion of the 36-monomer Villin headpiece subdomain
(Protein Data Bank code 1VII). This molecule has been
extensively studied in the literature because it is the small-
est polypeptide that has all of the properties of a single
domain protein, and, in addition, it is one of the fastest
folders [3]. The ribbon representation of this system is
shown in Fig. 1. We analyze the transition from different
random self-avoiding coil states to the native state, whose

structure was obtained from the Brookhaven Protein Data
Bank.

Our study is based on the analogy between Langevin
diffusion and quantum propagation. Previous studies have
exploited such a connection to study a variety of diffusive
problems using path-integral methods [4,5]. In this work,
we develop the formalism to determine explicitly the evo-
lution of the position of each monomer of the protein,
during the entire folding transition, without relying on a
specific choice of the reaction coordinate.

Before entering the details of our calculation, it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion
of a point particle in one dimension, subject to an external
potential U�x�:
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where ��t� is a Gaussian noise with zero average and
correlation given by h��t���t0�i � 2D��t� t0�. In this
equation, D is the diffusion constant of the particle in the
solvent; kB and T are, respectively, the Boltzmann constant
and the temperature.

FIG. 1 (color online). Ribbon representation of the Villin
headpiece subdomain, drawn using RASTER3D [11].
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The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck equation:
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It is well known that the stationary solution of (2) is the
Boltzmann distribution P�x� � exp��U�x�=kBT�. The so-
lution of (2), subject to the boundary conditions x�ti� � xi
and x�tf� � xf, can be expressed in terms of a path inte-
gral:

 P�xf; tfjxi; ti� � e�U�xf��U�xi�=2kBT
Z xf

xi
Dx���e�Seff �x�=2D;

(3)

where Seff�x� �
R
t
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This result shows that the problem of studying the diffusion
of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of
determining its quantum-mechanical propagation in imagi-
nary time, subject to the effective potential Veff�x�. This
approach has substantial differences from the one intro-
duced in Ref. [6], where the second derivative of Eq. (4) is
neglected. Such an approximation is not consistent with the
Fokker-Planck equation (2), and it leads, at large times, to a
distribution which is not the Boltzmann distribution [7].
Our approach also differs from the one introduced in
Ref. [8], where thermal fluctuations were neglected and
friction effects were partially accounted for by choosing
large discretization steps to filter out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e�Seff=2D is maximum and,
hence, for which Seff is minimum. A trajectory which
connects configurations that are not classically accessible
in the absence of thermal fluctuations corresponds to an
instanton in the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories [which we shall refer to
as the dominant folding pathway (DFP)]. Determining the
DFP for realistic proteins using conventional methods—
such as molecular dynamics—is extremely challenging
from the computational point of view. In addition to the
numerical difficulties associated with the existence of very
different time scales, one has also to face the solution of
boundary-value problems, which are considerably harder
than initial-value problems.

Fortunately, a dramatic simplification is obtained upon
observing that the dynamics described by the effective
action Seff is energy-conserving and time-reversible. This
property allows us to switch from the time-dependent
Newtonian description to the energy-dependent

Hamilton-Jacobi (HJ) description. We note that this could
not be done at the level of the Langevin equations (or
adopting the Onsager-Machlup action). In the HJ frame-
work, the dominant folding pathway connecting given
initial and final positions is obtained by minimizing—
not just extremizing—the target function (HJ functional)

 SHJ �
Z xf

xi
dl

���������������������������������������
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q
; (5)

where dl is an infinitesimal displacement along the path
trajectory. Eeff is a free parameter which determines the
total time elapsed during the transition, according to:

 tf � ti �
Z xf
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���������������������������������������
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s
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It should be stressed that the conserved quantity Eeff does
not correspond to the physical energy of the folding tran-
sition (which is not conserved in the presence of random
forces and friction). In principle, a statistical distribution of
folding times can be obtained by modeling the statistical
distribution of Eeff (for example, through MD simulations).
In the present work, we adopted the simple choice Eeff �

�Veff�xf�, which corresponds to the longest folding time.
However, we have noted that the minimization of the HJ
action by varying the value of Eeff of a factor up to 5 leads
to comparable results. The HJ formulation of the dynamics
leads to an impressive computational simplification of this
problem. In fact, the total Euclidean distance between the
coil state and the native state of a typical protein is only
1–2 orders of magnitude larger than the most microscopic
length scale, i.e., the typical monomer (or atom) size. As a
consequence, only �100 discretized displacement steps
are sufficient for convergence. This number should be
compared with 1012 time steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire fold-
ing process for a typical protein becomes feasible with
available computers. The physical reason why the HJ for-
mulation is so much more efficient compared to the
Newtonian formulation is the following: In traditional
molecular dynamics simulations, proteins spend most of
their time in metastable minima, trying to overcome free-
energy barriers. The HJ formulation avoids investing com-
putational times in such ‘‘waiting’’ phases by considering
intervals of fixed displacements rather than fixed time
length. The numerical advantages of the HJ formalism
for describing long-time dynamics at constant energy
were first pointed out in Ref. [8]. In this work, we show
that comparable computational advantages can also be
achieved for stochastic dynamics at fixed temperature, in
which the effects associated with thermal fluctuations and
dissipation are consistently taken into account.

Let us now apply this formalism to the study of the
kinetics of the protein folding. Although the ultimate
goal is to characterize folding pathways using an all-
atom description, in this exploratory study we test our
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method on a very schematic model in which the effective degrees of freedom (monomers) are representative of amino acids
and have a fixed mass. The monomer-monomer interaction is chosen to be the sum of a harmonic bond along the chain,
supplemented by a repulsive core between nonconsecutive monomers and by an attractive basin between monomers which
are in contact in the native state (Go model [9]). The detailed form of the potential used is
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where rij � jxi � xjj and �ij � 1 if i and j are in native
contact, while �ij � 0 otherwise. The parameters in the
potential have been chosen to be of the same order of
similar Go model applications (see [10] and references
therein): a � 0:38 nm,R0 � 0:45 nm, Rr � 0:65 nm, � �
2 kcal=mol. In this first exploratory study, we chose to
keep the problem as simple as possible and did not include
Coulombic, angular, or torsional interactions. Hence, the
present simple model is not expected to be realistic in
predicting the kinetics of tertiary structures formation:
The collapse of the protein will be driven mostly by the
boundary conditions. On the other hand, the Go potential
may be sufficiently long-ranged to be effective in the
determination of local secondary structures.

The DFP was obtained minimizing numerically the dis-
cretized target function
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where P �
PN�1
i ��li;i�1 � h�li�2 and
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�ln;n�1 is the Euclidean measure of the nth elementary
path step, and P is a penalty function which keeps all the
length elements close to their average [8] and becomes
irrelevant in the continuum limit.

We have checked that, with 100 discretization steps,
simulations performed on a wide range of � lead to con-
sistent results. The minimization of the discretized HJ
effective action was performed by applying an adaptive
simulated annealing algorithm and using 50 and 100 path
discretization steps. After a preliminary thermalization
phase based on the usual Metropolis algorithm, we per-
formed about 5 cooling cycles, consisting of 8000 cooling
steps each. In order to avoid trapping in local minima, at
the begin of each cooling cycle, the configuration was
heated up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate �90%. Each
calculation lasted for approximately �12 hours on a
single-processor work station. We considered the folding

transitions from 6 different random self-avoiding coil con-
figurations to the same native state. The center of mass was
subtracted from each configuration.

The results of the simulations performed at T � 300 K
and damping constant � � kBT=D � 0:1 ns�1 are re-
ported in Figs. 2–4, which show, respectively, the evolu-
tion of the radius of gyration, the percentage of monomers
in alpha-helix conformation, and the number of contacts,
as a function of the fraction of the total conformational
changes. (The total conformational change is defined as the
total Euclidean distance covered along the path:PN�1
n�1 �ln;n�1.)
Some comments on these results are in order. First of all,

we note that, in all simulations performed, the folding
transition occurs through two rather distinct regimes: In
an early stage, involving the first �80% of the total con-
formational changes, the paths are quite different from
each other and no secondary structure is formed. The ra-
dius of gyration is decreasing until about 60% of the re-
action and then remains essentially constant. Correspond-
ingly, the number of contacts is first increasing and then
remains constant. These results suggest that the initial
phase of the folding reaction consists of a collapse of the
protein, which strongly depends on the initial coil configu-
ration. Only in the last 20% of the conformational evolu-
tion is the protein rearranging to give rise to secondary
structures. This finding is in qualitative agreement with
recent experiments on Villin folding kinetics [3], in which
the fluorescence quantum yield and frequency shift were
investigated with laser temperature jump. It was found that
the unfolding kinetics could be fitted with a biexponential
function, with time constants of 70 ns and 5 �s. The 70 ns
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FIG. 2 (color online). The evolution of the radius of gyration
as a function of the fraction of the total displacement covered
during the folding transitions in 6 paths corresponding to differ-
ent initial random coil configurations.
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phase was interpreted as related to the formation and
melting of the helical turn connecting residues W23 and
H27.

We also note that, in the last 20% of the reaction, all
paths exhibit some degree of similarity. This is a natural
consequence of the funneled structure of the energy land-
scape in our topology-based model.

In conclusion, in the present work we have shown how
the formal analogy between Langevin diffusion and quan-
tum propagation can be exploited to perform efficient
simulations of the entire protein folding transition. The
framework developed in this work is completely general;
i.e., it does not rely on the particular choice of the relevant
degrees of freedom nor on the structure of the interactions.
Unlike other approaches based on a time-dependent de-
scription of the dynamics, the present approach does not
suffer from limitations associated to rare events, and, there-
fore, its applicability is not limited to very small proteins or
fast folders. A major improvement connected to the use of
this approach is the significant reduction of the computer

time necessary for the computation coming from the differ-
ent treatment of the fluctuations which determine the time
scale of Newtonian dynamics. As a result of this simplifi-
cation, within our approach simulating the entire folding
process for a typical protein becomes feasible with avail-
able computers.

Since the focus of the present work was on methodology
rather than on phenomenology, we have performed our
exploratory numerical analysis using a coarse-grained
topology-based model. We have shown that the approach
is computationally feasible and allows one to access im-
portant information about the evolution of the different
structures. We have found that, in such a simple model,
the transition occurs through an initial collapsing phase
driven by the starting coil configuration and a later re-
arrangement phase, in which all computed paths display
strong similarities. Simulations using more sophisticated
all-atom models are in progress and will clarify whether
these are general features or are biases of the topology-
based model adopted in this work.
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FIG. 4 (color online). The evolution of the number of contacts
as a function of the fraction of the total displacement covered
during the folding transitions in 6 paths corresponding to differ-
ent initial random coil configurations.
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FIG. 3 (color online). The evolution of the percentage of
monomers in alpha-helix conformation as a function of the
fraction of the total displacement covered during the folding
transitions in 6 paths corresponding to different initial random
coil configurations.
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