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Graphene has an unusual low-energy band structure with four chiral bands and half-quantized and
quantized Hall effects that have recently attracted theoretical and experimental attention. We study the
Fermi energy and disorder dependence of its spin Hall conductivity �SH

xy . In the metallic regime we find
that vertex corrections enhance the intrinsic spin Hall conductivity and that skew scattering can lead to
�SH
xy values that exceed the quantized ones expected when the chemical potential is inside the spin-orbit

induced energy gap. We predict that large spin Hall conductivities will be observable in graphene even
when the spin-orbit gap does not survive disorder.
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Introduction.—The low-energy band structure of gra-
phene consists of four chiral bands that realize (2� 1)-
dimensional relativistic field theory models with parity
anomalies. The anomalies imply unusual spectra in an
external magnetic field and quantized and half-quantized
Hall effects [1,2]. Theoretical interest [3] in these unusual
electronic systems has increased [4] recently because of
experimental progress [5], including measurements of the
anticipated half-quantized quantum Hall effect. One par-
ticularly interesting observation, due to Kane and Mele
[6,7], is that because of a gap produced by spin-orbit
interactions, the spin Hall conductivity �SH of undoped
graphene is quantized in the absence of a magnetic field.
This suggestion is related to recent work on the anomalous
Hall effect in ferromagnetic metals [8] and on its paramag-
netic cousin, the spin Hall effect [9], in which it was
suggested that these transport coefficients can be domi-
nated by an intrinsic momentum-space Berry phase con-
tribution that reduces to quantized values when the Fermi
level is in a gap. Here we examine how the quantized spin
Hall effect is altered when the Fermi energy in the gra-
phene plane is gated into the metallic regime. We find that
the intrinsic spin Hall effect is no longer quantized, that it
is enhanced by disorder vertex corrections, and that in the
metallic regime skew scattering can potentially lead to
parametrically larger spin Hall conductivities. Because
the Bloch state disorder broadening in current samples is
(according to our estimates) much larger than the clean
system spin-orbit gap, these results are necessary for the
interpretation of experiment. Spin Hall effects should be
observable even when the spin-orbit gap does not survive
disorder.

Disordered graphene model.—When spin-orbit interac-
tions are included [6], the low-energy physics of a clean
undoped graphene crystal is described by an eight-band
envelope function Hamiltonian

 Ĥ0 � v�kx�z�x � ky�y� ���z�zsz; (1)

where sz � � is the up (down) electron spin component

perpendicular to the graphene plane, �z � � is a valley
label that specifies one of the two inequivalent (K and K0)
points in the crystal Brillouin zone near which low-energy
states occur, and the �i are Pauli matrices representing a
pseudospin degree of freedom corresponding to the two
sites per primitive cell of a hexagonal lattice. The parame-
ter � is the strength of the spin-orbit coupling, and we take
@ � 1. For � � 0 this Hamiltonian defines four spin-
degenerate gapless bands in which the pseudospin orienta-
tion lies in the x̂-ŷ plane and winds around the ẑ axis, either
clockwise or counterclockwise, with a 2� planar wave
vector rotation. The operators �i, sz, and �z commute
with each other. Random defects can in general produce
transitions between bands and between spins. Here we
assume sufficiently spatially smooth spin-independent dis-
order so that sz and �z are good quantum numbers, allow-
ing us to consider the cases �z; sz � �1 independently. For
this disorder model we evaluate the Kubo-formula Hall
conductivity in the self-consistent Born approximation
(SCBA) for chemical potentials inside and outside the
spin-orbit gap, including both nontrivial pseudospin de-
pendent disorder self-energies and ladder diagram vertex
corrections. When the chemical potential lies in the gap, an
elementary calculation shows that in the absence of disor-
der the single-band bulk partial Hall conductivity is given
exactly by the half-quantized Berry phase contribution
[8,9], ��sze2=2h�. Disorder corrections to the intrinsic
Hall effect are small near the gap edge but yield substantial
enhancement in more strongly gated systems.

2D-Dirac-band Hall effect.—The 2D Dirac Hamiltonian
in the spin- " K valley is

 Ĥ � v�kx�x � ky�y� � ��z: (2)

Spin-orbit coupling opens up a gap which breaks the
spectrum into an electron band at positive energies and a

hole band at negative energies ��k � �
������������������������
�2 � �vk�2

p
,

where k � jkj and � refer to electron and hole bands,
respectively. (The three other graphene bands differ either
in the Dirac band chirality sense, or in the sign of the mass
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term, or in both ways.) In what follows, we assume that the
Fermi energy is positive; because of the symmetry of the
Dirac Hamiltonian, generalization to negative �F is trivial.

The Kubo formula for the Hall conductivity depends on
both band-diagonal and off-diagonal matrix elements of
the velocity operator and on the electronic Green function.
The disorder-free retarded Green function and velocity
operators for this Hamiltonian are GR

0 ��� � ��� Ĥ �
i���1, vx � v�x, and vy � v�y. We will use the Streda-
Smrcka [10] version of the Kubo formula: �xy � �Ixy �
�IIxy, where
 

�Ixy�
�e2

4�

Z �1
�1

d�
df���
d�

Trfvx�GR����GA����vyGA���

�vxGR���vy�GR����GA����g (3)

and
 

�IIxy�
e2

4�

Z �1
�1

d�f���Tr
�
vxG

R���vy
GR���
d�
�vx

GR���
d�

	vyG
R����vxG

A���vy
GA���
d�
�vx

GA���
d�

vyG
A���

�
:

(4)

2D-Dirac-band intrinsic Hall conductivity.—There is a
part of Hall conductivity (usually called intrinsic) which is
not induced by disorder but rather is due to anomalous
trajectories of free electrons under the action of the electric
field. It is most simply evaluated by expressing [8] it in
terms of matrix elements of the velocity operator between
unperturbed Bloch states:

 

�int
xy �

e2

�

P
k

f�k�f
�
k

���k��
�
k �

2 2 Im�hu�k jvyju
�
k ihu

�
k jvxju

�
k i� ; (5)

where the f�k are occupation numbers in the electron and
hole bands, � the area of the system, and ju�k i the
k-dependent pseudospinors of the chiral Dirac
Hamiltonian, Eq. (2).

 ju�k i �
cos��=2�

sin��=2�ei�

� �
; ju�k i �

sin��=2�
�cos��=2�ei�

� �
; (6)

where cos��� � �=
������������������������
�vk�2 � �2

p
and tan��� � ky=kx. For

the chemical potential in the upper band with Fermi mo-
mentum kF we find from (5)

 �int
xy � �

e2�

4�
��������������������������
�vkF�2 ��2

p : (7)

When the chemical potential is in the gap we find

 �gap
xy 
 �

e2

4�
: (8)

When the Kubo-Streda formula is written in terms of
Green functions, as in (3) and (4), the intrinsic contribution
(7) and (8) corresponds to the summation of only disorder-
free diagrams in �Ixy and �IIxy. We found that in the metallic
regime the disorder-independent part of�Ixy equals with (7)
and �IIxy � 0.

When the chemical potential is in the gap we found
�Ixy � 0 but �IIxy � �

e2

4� , which is the same as in (8).
This is the 2D-Dirac model’s half-quantized (in units
e2=2�@) Hall conductivity, which after summing over
bands is responsible for the quantum spin Hall effect
discussed in Refs. [6,7,11]. It may be surprising that the
Hall conductivity in Eq. (8) is a half-integer in units
e2=�2�@� given general arguments that it must be an
integer for a filled band of noninteracting electrons. The
resolution of this paradox is that Dirac bands come in pairs.
The sum of the K and K0 valley bulk conductivities is
quantized; correspondingly only one band of edge states
is induced by the truncation of both K and K0 bulk bands.

Influence of disorder on �xy.—We assume a
�-correlated spin-independent random potential with
Gaussian correlations hV�r1�V�r2�idis � nV2

0��r1 � r2�.
The SCBA that we employ includes only contributions

from Feynman diagrams without crossed disorder correla-
tion lines. This common approximation is self-consistent
but incomplete. We assume that crossed-disorder-line con-
tributions give rise to parametrically distinguishable ef-
fects and do not affect our qualitative conclusions about
Hall effects in metallic graphene. Figure 1 illustrates the
SCBA self-energy diagram which can be evaluated to
obtain �R � � i

4�q �1� �z cos���� where �q is a quantum
life time at the Fermi surface:

 1=�q � nV2
0

Z
kdk���F � ��k � �

nV2
0kF
vF

: (9)

Following the notation of Dugaev et al. [12] and Inoue
et al. [13], the SCBA retarded Green function is

 

GR � 1
1=GR0��R �

�F�i�0�v�kx�x�ky�y�����i�1��z
��F����i	����F����i	��

; (10)

where �0 � 1=�4�q�, �1 � �0 cos���, 	� � �0 �
�1 cos���, and 	� � �0 � �1 cos���. For these chiral
bands disorder not only gives the quasiparticle states a
finite lifetime but also changes the quasiparticle eigenspi-
nors. The SCBA includes in addition ladder diagram vertex
correction illustrated in Fig. 2. For large vkF� the terms in
�Ixy which are products of retarded and advanced Green
functions dominate so that the 2D matrix vertex function
for which we must solve satisfies

 �y � �y � nV
2
0

Z d2k
�2��2

GR�yG
A: (11)

This equation is most easily solved by assuming that �y�

a�0�b�x�c�y�d�z and deriving equations for a, b, c,

and d. We find that c� 2��vk�2�2�2�
4�2��vk�2

, b � � 8�0���vk�2�2�2�

�4�2��vk�2�2
,

FIG. 1 (color online). Self-energy Feynman diagram.
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and a � d � 0. The vertex correction is not trivial even
when � � 0 because then c � 1=2. This means that the
approximation of disorder effects only by a level broad-
ening is usually invalid even in the weak disorder limit.
The SCBA �Ixy is obtained by substituting the disorder-
dressed Green function [Eq. (10)] for the bare Green
function and v�y for vy in the Kubo formula Eq. (3). We
find that

 �xy �
�e2�

4�
�����������������
�vkF�2��2
p

�
1� 4�vkF�

2

4�2��vkF�2
� 3�vkF�

4

�4�2��vkF�2�2

�
: (12)

The second and third terms in square brackets in Eq. (12)
represent disorder corrections to the intrinsic Hall conduc-
tivity of the 2D-Dirac model. We note that all terms are
independent of the disorder potential strength and of the
concentration of scatterers and in this sense are parametri-
cally similar. They do, however, have different depen-
dences on the position of the Fermi level. Note that when
the chemical potential approaches the gap the contribution
remains finite and disorder corrections vanish, recovering
the model’s half-quantized Hall effect [6]. In our previous
publications [14] we discussed the semiclassical interpre-
tations of such disorder effects in terms of the coordinate
shift (side jump [15]) and asymmetry of the collision term
corenel. Our result (12) is in perfect agreement with the
semiclassical theory of the anomalous Hall effect pre-
sented in [14]; however, we postpone the detailed discus-
sion to our future publications.

Non-Gaussian disorder.—We have so far made the usual
approximation of assuming Gaussian disorder correlations.
Although normally small, nonzero third moments of the
disorder potential distribution can [16,17] alter �xy quali-
tatively since they can favor scattering with a particular
chirality (skew scattering) and consequently lead to a �xy
contribution that diverges in the limit of weak disorder
scattering. The size of this contribution to �xy is particu-
larly difficult to estimate since it depends very strongly on
the details of the scattering potential. To illustrate its
potential role we consider for concreteness a model of
uncorrelated �-function scatterers: V�r� �

P
iVi��r�

Ri�, Ri random, hVii � 0, h�Vi�2i � V2
0 � 0, and h�Vi�3i �

V3
1 � 0.
Asymmetric scattering can be described directly using

either Boltzmann transport theory or the Kubo formula,
including the nonstandard Feynman diagrams implied by
non-Gaussian disorder models. We apply results, which
have been derived previously, to the graphene case. Let
 �k � �1=

�����
�
p
�eikrju�k i be a Bloch state in the electron

band with positive energy and Vk;k0 � h 
�
k jV̂j 

�
k0 i be a

disorder potential matrix elements within the band.
Following Eqs. (32)–(36) in Ref. [18] for zero temperature
and a single band, we find

 

�sk
xy

�e�tr�2
� �

Z d2k
�2��2

�
�@f0

@�

�
v2
x�k�
�?

� �
vFkF
4��?

(13)

where vx�k� � @��k =@kx, vF is the Fermi velocity, and
 

1=�tr �
Z d2k0

�2��2
!k;k0 �1� cos����0��;

1=�? �
Z d2k0

�2��2
!k;k0 sin����0�:

(14)

Since the scattering rate !k;k0 is usually only weakly chiral
(�tr � �?), !k;k0 can be estimated from time-dependent
perturbation theory [16,19]. The lowest order symmetric
scattering rate is given by the golden rule expression, while
the lowest order antisymmetric contribution appears at
third order [see, for example, Eqs. (2.7) and (3.11) in
Ref. [16] ].

 !�3a�k;k0 � ��2��
2���k � �k0 �

	
Z d2k00

�2��2
ImhVk;k0Vk0;k00Vk00;kidis���k � �k00 �:

(15)

This yields

 

1

�tr
�

�vkF�2 � 4�2

4�q��vkF�2 ��2�
; (16)

 

1

�?
�

V3
1

��q�2nV4
0

��vkF�
2

8��vkF�2 � �2�3=2
; (17)

so that the skew scattering Hall conductivity contribution
due to non-Gaussian disorder correlations is

 �sk
xy � �

e2V3
1

2�nV4
0

��vkF�4

�4�2��vkF�2�2
: (18)

The Hall conductivity contribution (18) is inversely pro-
portional to the impurity concentration n, and therefore can
in principle dominate in relatively clean samples. Since the
size of third disorder correlation moment in a particular
sample is unlikely to be reliably known and can be exceed-
ingly small, we expect that the relative importance of skew
scattering will always have to be assessed experimentally.

Application to graphene.—A finite charge Hall conduc-
tance requires broken time reversal symmetry. In graphene
the vanishing conductance results from cancellation be-
tween bands of opposite spin. The Hall conductance we
evaluate here could be measured in graphene if the Fermi
levels in the two spin- " and the two spin- # bands differed.
It may be possible to generate spin polarization in graphene
by optical orientation [20], by tunneling through ferromag-
netic contacts, or by hyperfine coupling to polarized nuclei.
We note that the ẑ component of spin is expected to relax

FIG. 2 (color online). Vertex correction Feynman diagram.
Black dots represent the Pauli operator.
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particularly slowly in graphene because of the planar char-
acter of the crystal and the � character of the orbitals near
the Fermi energy. The alternative of studying the physics
we address here, by applying an external magnetic field, is
not favorable since it leads to an ordinary Hall effect in
addition to the anomalous Hall effect. When the chemical
potentials of spin-up and spin-down electrons are different
our Hall effect calculation for each band remains valid. The
total Hall current is therefore

 �AHE
xy � 2��xy�
"� � �xy�
#��; (19)

where the coefficient 2 reflects equal contributions from
the K and K0 valleys.

The Hall conductivity we evaluate appears in the spin
Hall response even in the absence of external magnetic
fields. To find the magnitude of the spin Hall effect one
should remember that instead of charge ewe are interested
in spin �1=2 carried by electrons: �SH

xy � 4�xy=2e. Here
the coefficient 4 is due to the 4 Dirac bands which con-
tribute equally to the spin Hall effect. The spin Hall effect
could be measured by using ferromagnetic leads, in the
extreme case measuring transport only in one spin subsys-
tem. For that case the charge Hall conductivity becomes
2�xy. Alternately the spin Hall conductivity could be mea-
sured optically using either the Faraday effect [21] or
polarization selective electroluminescence [22]. Both ap-
proaches should also be successful in graphene. We expect
that the results we derive here are valid for �F * ��1,
whereas the quantized spin Hall conductivity will be ob-
servable only if � * ��1. The value of ��1 in current
samples can be estimated roughly from measured mobi-
lities [5] which are roughly constant except for Fermi
energies below �50 meV. Associating the change in mo-
bility at low carrier densities with disorder mixing between
electron and hole bands implies a ��1 value of the same
order. The value of � is difficult to estimate accurately.
Based on the relevant potential energy and length scales
Kane and Mele have estimated that �� 0:2 meV. This is
likely to be an overestimate since the splitting represents an
average of spin-orbit interactions that vary in sign over the
system. We [23] have separately estimated on the basis of a
tight-binding model with atomic spin-orbit interactions
and ab initio electronic structure calculations that ��
0:001 meV. In any event, it appears clear that sample
quality will need to improve substantially in order to
realize the quantum spin Hall effect. As our calculation
shows, however, the surprisingly large spin Hall currents
that flow from the chiral graphene bands should still be
measurable in the metallic regime.
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