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The compressibility of a two-dimensional electron system with spin in a spatially correlated random
potential and a quantizing magnetic field is investigated. Electron-electron interaction is treated with the
Hartree-Fock method. Numerical results for the influences of interaction and disorder on the compressi-
bility as a function of the particle density and the strength of the magnetic field are presented.
Localization-delocalization transitions associated with a highly compressible region in the energy
spectrum are found at half-integer filling factors. Coulomb blockade effects are found near integer
fillings in the regions of low compressibility. Results are compared with recent experiments.
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The integer quantization of the Hall conductance of a
two-dimensional electron system (2DEG) in a strong mag-
netic field [1] can be understood in terms of quantum phase
transitions near the centers of the Landau bands associated
with disorder-induced localization-delocalization transi-
tions of single-electron states in a one-parameter scaling
model. Neglecting interaction, the localization length has
been found diverging, � / jE� ECj�~�, with the critical
energy Ec. The universal value of the critical exponent ~� �
2:34� 0:04 [2,3] is widely accepted. Peaks in the magne-
toconductance are associated with Ec. The localized states
in the band tails are associated with zero conductance at
zero temperature [4].

Despite consistency with several transport experiments
[5], the validity of the one-parameter scaling model has
been controversially discussed, in particular, the impact of
interaction on the frequency-dependent scaling of the con-
ductivity and the tunneling density of states [6–8].

In recent experiments, mesoscopic conductance fluctua-
tions found in silicon metal-oxide-semiconductor field-
effect transistors in dc transport show regular patterns
which have been interpreted as charging effects [9].
Patterns associated with the Coulomb blockade in local-
ized states have also been found in measurements of the
shift d�=dn of the chemical potential � with a scanning
single electron transistor probe when changing the particle
density n [10]. The latter results have been interpreted in a
model in which the quantum Hall transition appears as a
result of the strong and complete screening of the disorder
potential near half-integer filling factors. The absence of
screening in the incompressible regions of the energy
spectrum leads to localized states that account for the
observed charging effects. In this model, the phase tran-
sition has been interpreted as a percolation transition be-
tween incompressible and compressible regions at certain
concentrations of localized charge islands.

We report results of an extensive unrestricted Hartree-
Fock (HF) study of the 2DEG with spin in the presence of
long-range correlated disorder and a perpendicular mag-
netic field that can contribute towards a more detailed

understanding of the experiments. We have studied the
change d�=dn of the chemical potential � with the par-
ticle density n � N=L2 ofN particles in a square system of
linear size L as a function of n and the magnetic field
strength B. This quantity is proportional to the inverse
compressibility ��1 / d�=dn. We find interaction-
induced enhancement of the g factor and strong evidence
for charging effects in regions near integer filling factors.
The shapes of the HF quasiparticle wave functions indicate
no significant change in the localization behavior at the
Fermi level compared to the noninteracting limit. This is
due to quantum corrections which modify the percolation
mechanism [11]. Our results are consistent with the recent
experiment [10]. However, we find that the interaction does
not destroy the critical behavior at the quantum Hall phase
transition.

The Hamiltonian of the 2DEG in GaAs isHs
0 � VC, with

Hs
0 � �p� eA�2=�2m�� � sg�BB=2� Vdis�r�, with the

vector potential A � �0; Bx; 0�, flux density B, and spin
s � �1. m� � 0:067me is the electron mass, �B is the
Bohr magneton, and g � �0:44 is the electron g factor.
The impurity potential is Vdis�r� �

PNi
i�1�Vi=�d

2��
exp	�r� ri�2=d2
, with Ni the number of scatterers at
random positions ri with random strengths Vi, �V0 <
Vi < V0. The range d of the impurity potential is the spatial
correlation length of the randomness, d � 0 corresponds to
uncorrelated disorder, and d > lB (lB �

�����������������
@=m�!c

p
, mag-

netic length; !c � eB=m, cyclotron frequency) yields a
slowly varying potential which is believed to be adequate
for high mobility samples. The disorder introduces the en-
ergy scale � � �NiV

2
0=l

2
BL

2�1=2 (L2, area of the 2DEG).
The Coulomb interaction VC�r� r0� � e2=�4���jr� r0j�
introduces an energy scale � � e2=4���lB (e, elementary
charge; dielectric constant � � 12:4). Periodic boundary
conditions are assumed [12,13]. Neglecting disorder and
interaction, the Schrödinger equation yields the Landau
wave functions jmXi (X � kjl2B, guiding center coordinate;
kj � 2�j=L, wave number) that are used for the construc-
tion of the HF basis.
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The HF equation is

 

X

b

FsabC
�s
b � E�sC�sa ;

where hmXj�si � C�smX � C�sa are the expansion co-
efficients of the HF states j�si and E�s the energy ei-
genvalues. The Fock matrix FsmXm0X0 � Fsij � Hs

0;ij �P
a
P
b 	abMijab � 	

s
abMiabj has to be determined self-

consistently. It contains the interaction matrix elements
Mijab � ��l=L

2�
P
qx;qyV�q�hije

iqrjjihaje�iqrjbi and the
density matrix 	ij �

P
s	

s
ij �

P
��occ�C

�s�
i C�sj .

We have performed self-consistent calculations for B in
the range of 1–6 T and n � �2–200�=L2 in a square of
length L � 30a for a � 10 nm. The sample size is com-
parable to the sample size studied in Ref. [10]. This yields
electron densities n � �0:22–22� � 1010 cm�2. We used
250 impurities with d � 2a and V0 � 2 meV to model a
high mobility sample.

To study Coulomb interactions, it is useful to control its
strength relative to the other energy scales. We set � �
c�0; c � 0 corresponds to the noninteracting system, c �
1 to the nonscreened Coulomb interaction. For each com-
bination of parameters, the self-consistent field and, thus,
total energy and chemical potential are determined. Thus,
the self-consistent field can relax with respect to changes in
parameters and ground state, and the quasiparticle wave
functions are optimized for given N and B. This is some-
times referred to as the ‘‘delta-SCF method’’ [14]: The
difference between total energies is calculated successfully
in HF approximation, because the response of the
N-particle system to the addition of another electron or
hole is contained in the calculation of the N � 1-particle
many-body wave function.

The number of Landau bands per spin included in the
calculation was chosen such that, if initially the electron
with the highest energy at the highest particle number
(Nmax � 200) is in Landau band mmax, mmax � 1 Landau
bands per spin are used in order to provide enough states
for the self-consistent field calculations; N
 � L2=
�2�l2B� � BL2e=h is the number of flux quanta in the
system and equals the number of states per spin in a
Landau band. For example, at B � 1 T and N
 � 21, we
have used 11 Landau bands per spin, in total 462 states to
host 2–200 electrons. In the results presented below, we
focus on particle numbers 2<N < 117.

For energies in the band tails, the wave functions are
localized near equipotential lines, at least for a strong
magnetic field. In the center of the band, the wave func-
tions are delocalized (Fig. 1 inset).

The scaling of the participation number P at the Fermi
energy E, P�1 �

R
d2rj 4�r�j4 / ��2�E�, as a function of

the filling factor (Fig. 1) has been investigated [15]. With
~� � 2:3, a reasonable collapse to a single curve has been
achieved of the data for different system sizes consistent
with the critical behavior of the localization length without

interaction. The curve resembles the scaling of HF wave
functions obtained at fixed filling factor using occupied and
empty HF orbitals [15]. Within our method, the orbitals are
separately determined for every combination of electron
density and magnetic field, together with the self-
consistent potential. The consistency within the errors of
the data with the scaling hypothesis indicates that the
critical behavior of the HF states is unaffected by the
change of the self-consistent field induced by changing
the filling factor. However, this must be confirmed by
more precise scaling studies for larger systems [2]. The
HF energy for N particles EB;NHF �

1
2

P
abs	

s
ab�H

s
0;ab � F

s
ab�

is used to determine the chemical potential � � EN�1;B
HF �

EN;BHF and

 

d�
dn
� L2�EN�1;B

HF � 2EN;BHF � E
N�1;B
HF � /

1

�
:

This definition reflects a global property, in contrast to the
local compressibility reported in Ref. [10]. However, the
total energy and its derivative depend on the density ma-
trices 	";# formed with the HF orbitals. The latter are
obtained for a finite system and can be considered to reflect
local properties such as a specific disorder potential and
electrostatic and exchange interaction with the surrounding
electrons. Thus, the inverse compressibility calculated here
can be expected to reflect the features observed in the
measurements done with a tunnel tip.

Figure 2 shows d�=dn for various particle numbers and
magnetic fields without and with interaction. Without in-
teraction [Fig. 2(a)], states are compressible almost every-

FIG. 1 (color). Scaling of the participation ratio � � L2�D�2�P
as a function of the filling factor ��� �c�L1=~�, disorder averaged
for each system length L [15]. Parameters ~� � 2:3 (critical
exponent) and D�2� � 1:6 (correlation dimensions of wave func-
tions [21]) lead to reasonable data collapse. Inset: Dependence of
P��EF� on � for spin-up (solid line) and spin-down (dashed line)
for L � 30:1a, disorder averaged. The g-factor enhancement is
so large that a subsequent filling of the spin-split Landau level is
observed. Color inset: Typical probability density [red (bright)
high, blue (dark) low value] of a HF state near the band center.
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where except near even integer filling, � � N=N
. This is
expected, since every particle that enters finds many states
at energies close to the Fermi level. The Fermi energy
remains almost constant with respect to the particle num-
ber, as long as the actual Landau band is not completely
filled. Near even integer filling, the Fermi level jumps to

the next Landau level due to very small level density. In the
presence of Zeeman splitting, there are N
 states per spin.
Since the Zeeman energy in GaAs is very small as com-
pared to other energy scales, the levels overlap strongly
and are equally occupied. Incompressible lines are then
obtained only for even fillings. With interaction, the
Zeeman splitting is large due to exchange enhancement
of the g factor [16]. Spin-up and spin-down levels are well
separated, resulting in additional incompressible lines at
odd fillings. This effect is exaggerated in the unrestricted
HF approximation [17].

Figures 2(b) and 2(c) show compressibility patterns for
different interaction strengths. The compressibility of the
interacting electrons shows several regular structures.
Horizontal lines of constant compressibility parallel to
the B axis appear below � � 1=2, enclosed by lines of
low or even negative compressibility. At � � 1=2, there is
a region of high compressibility. For filling � � 1, lines of
low compressibility parallel to n � �nB � j=2�l2B �
jeB=h are observed. The range of electron density where
this happens is independent of B. The number of the
strongly localized states must therefore be independent of
B. This has been ascribed before to Coulomb blockade in
strongly localized states associated with deep potential
wells [10]. When the potential landscape is completely
screened, the addition of a further electron is possible.
This can even result in a negative compressibility, which
in this case is not related to a thermodynamic instability but
to the fact that a positive impurity can be overcompensated
by an entering electron. This, in turn, causes a depletion of
electronic charge afterwards in this region [18]. These
charging effects occur also in the higher Landau levels,
although less prominently, because the localization length
of the electrons increases with the Landau level index, thus
making the system more sensitive to compression. We
emphasize that the behavior of the HF total energy with
n and B provides the correct charging pattern in the
strongly localized region.

In addition to these Coulomb interaction-dominated
features, we observe highly compressible regions around
half-integer fillings � � j=2, nB � jeB=2h. These corre-
spond to the centers of the Landau bands where the dis-
order is considerably screened. The width of these regions
�next is roughly constant as a function of B. The number of
the effectively extended states (diameters larger than L) in
a Landau band must be almost independent of B, although
the total number of single-electron states per Landau band
increases linearly with B. This can be understood in the
one-band approximation, where the single-particle density
of statesD scales as D�E=�� � �N
=��f�EB=�� [19]. The
energy interval �E � jE� Ecj in which the localization
length exceeds the system size is defined by ��E� �
�0jE� E0j

�~� > L. Thus, �E��L=�0�
�1=~�/B�1=~�, since

�0 / ��2 / B�1, and �next�D�0��E/B1=2�1=~��B0:065,
with � � 2:3.

FIG. 2 (color). d�=dn (in units of meV=L2) in the �n; B� plane
for interacting electrons (a) �=�0 � 0, (b) �=�0 � 0:1, and
(c) �=�0 � 0:5. Dark (blue) regions high, bright (red) regions
low compressibility. Solid white lines are guide to the eyes.
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In contrast to previous assertions [10], we find, between
the low-compressibility regions of Coulomb blockade in
the strongly localized states and the high-compressibility
regions of delocalization, that there are large regions of
intermediate statistically fluctuating compressibility.
These correspond to localized states that cover larger
spatial regions with randomly fluctuating areas. The charg-
ing energies of these states, if applicable at all, should be
much smaller than in the regimes of strongly localized
states and also strongly fluctuating. As a consequence,
one would not expect regular compressibility patterns in
these intermediate regions, and this is what is observed in
Fig. 2(c). In these regions, the localization properties are
determined by the competition of tunneling between and
destructive interference along the percolating equipotential
lines, and it is this competition that is responsible for the
critical behavior [11]. The regimes of strong localization
and extended states are clearly observed, separated by
regions of intermediate states.

This could be affected by the finite system size L, if the
localization length of the intermediate states is comparable
to L. Here it is likely that the fluctuations vanish in the
thermodynamic limit, and only incompressible localized
stripes remain, consistent with experiment. Preliminary
results for larger systems show that the fluctuations seem
to remain present. A systematic study of the size depen-
dence will be reported elsewhere [20].

In conclusion, we have investigated the density depen-
dence of the chemical potential as a function of electron
density and magnetic field for a quantum Hall system. We
have shown that electron interactions, treated in HF ap-
proximation, but with the possibility for the ground state to
respond to changes in magnetic field or electron density,
modify the compressibility pattern. The appearance of
regular structures can be interpreted as charging of local-
ized states. This is consistent with recent experiments and
suggests that interactions are important for the understand-
ing of the integer quantum Hall effect, especially in the
plateau regions. However, the results reported here are not
in contradiction to the conjecture that the critical behavior
of the metal-insulator transition is unaffected by interac-
tions and microscopic details of the disorder potential,
since the scaling of the participation number at the Fermi
energy is found to be consistent with the scaling hypothe-
sis, although for each electron density the effective poten-
tial changes as a result of charge rearrangement.

The question remains open if correlations beyond the HF
approximation can affect the compressibility pattern. Cal-
culations regarding correlation effects have not been done.
However, the HF results reproduce the charging effects in
the regimes of localized states well and support the as-
sumption that the critical behavior of the integer quantum

Hall transition can be understood within a single-particle
model.
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