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Complete wetting of geometrically structured substrates by one-component fluids with long-ranged
interactions is studied theoretically. We consider periodic arrays of rectangular or parabolic grooves and
lattices of cylindrical or parabolic pits. We show that the midpoint interfacial heights within grooves and
pits are related in the same way as for complete wedge and cone filling. For sufficiently deep cavities with
vertical walls and small undersaturation, an effective planar scaling regime emerges. The scaling exponent
is —1/3 in all cases studied, and only the amplitudes depend on the geometrical features. We find
quantitative agreement with recent experimental data for such systems.
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The growing interest in device miniaturization has led to
the emergence of various experimental techniques of tai-
loring the geometrical and chemical topography of solid
surfaces at mesoscopic scales [1,2]. Such nanopatterning
of the surfaces may result in drastic changes of their
wetting characteristics, which is important for technologies
such as microfluidics [3] or the fabrication of superhydro-
phobic or superhydrophilic surfaces [2]. Experimental
studies of complete wetting on sculptured surfaces [4,5]
demonstrate the strong influence of nanocavities on the
adsorption behavior relative to that of flat substrates.
Theoretical studies of adsorption in infinitely deep gener-
alized wedges [6] predict geometry-dependent wetting
exponents.

Although it is known that a nonplanar topography of a
substrate modifies its wetting by a fluid, recent studies have
revealed surprising hidden symmetries, or so-called co-
variances, which relate various local adsorption properties
for different substrate geometries. These covariances imply
that different confining potentials can lead to identical
local interfacial properties once external fields are suitably
rescaled.

For instance, for both long- and short-ranged forces,
complete wetting at the apex of a wedge can be mapped
onto critical wetting of a planar substrate with the apex
angle playing the role of the contact angle [7], which maps
one-to-one to temperature. In two-dimensional systems,
critical wedge filling can be related to the strong-
fluctuation regime of critical planar wetting [8]. Recently,
a new example of geometrical covariance relating wedge
and cone complete filling has been reported [9] show-
ing that the equilibrium midpoint interfacial heights /©
in a cone and a wedge obey the relation ZEO)(A o, a) =

159)(A w/2, @) with a being the substrate tilt angle and
Ap =0 the chemical potential deviation from liquid-
vapor coexistence. This relation is valid for the leading
behaviors of / in the limit Ay — 0.

In the following we demonstrate that complete wetting
of substrates patterned by periodic arrays of grooves or
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quadratic lattices of pits (see Fig. 1), both of depths D,
exhibits a geometrical covariance similar to the one de-
scribed in Ref. [9]. We consider rectangular or parabolic
grooves and cylindrical or parabolic pits, taking into ac-
count the long range of the intermolecular potentials. We
observe four different scaling regimes: filling, postfilling,
effective planar, and planar, with the neighboring regimes
being separated by, as we call, Aubf > Au’ > Au,. The
aforementioned covariance relates the behavior of the mid-
point wetting film thicknesses for all geometries and holds
within an undersaturation range Aué < Au < Auk$ (for
Apt see below; the superscripts p, g refer to pits and
grooves, respectively) which we call the postfilling scaling
regime. In the case of cylindrical pits or rectangular
grooves, for Ap N\, Aul#(R) and for sufficiently large
D/R, the analogue of capillary condensation occurs such
that the cavities are rapidly filled by the liquid. In the case
of the parabolically shaped cavities, however, A uk® marks
the crossover from the power-law filling regime at Ay >
Aul:$, to the postfilling one. If we denote the equilibrium
interface height at the position of the symmetry axes of the

cylindrical or parabolic pits as 19 and in the middle of the

rectangular or parabolic grooves as l(o), we obtain in the
postfilling regime

I9e(Ap, R, P,D) = RA, (Ap/ep)(R/)'*0), (1)
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FIG. 1. Top view of the substrate geometries. (a) Quadratic
lattice of identical pits (cylinders or paraboloids). (b) Periodic

array of grooves (rectangular or parabolic). All cavities have
finite depths D.

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.97.106102

PRL 97, 106102 (2006)

PHYSICAL REVIEW LETTERS

week ending
8 SEPTEMBER 2006

A, (x) = Ag(x/2). 2

Here & and o are a molecular energy and length scales,
respectively. Equation (2) expresses the same covariance
relation as the one reported in Ref. [9]. The scaling func-
tions A, ,(x) do not depend on D and P; i.e., in this regime
lE, ¢ increases upon decreasing undersaturation in the same
way for an isolated cavity as for arrays of them.

We base our calculations on the effective interface
Hamiltonian description [10]

H[I]— ] f Px(o 1+ (VD2 + Apdpl+ Wk D), (3)

where I(x) denotes the local interfacial height which is
measured from the plane z = O where the substrate ends,
x = (x, y) denotes the lateral coordinates, o7, is the surface
tension of the free liquid-vapor interface, Ap = p; — p, is
the difference in number densities of the coexisting bulk
phases, and W(x, [) is the effective interface potential. The
functional in Eq. (3) can be derived systematically from
microscopic density functional theory, which allows one to
determine the explicit functional form of W(x,[) for a
given substrate shape and its dependence on the fluid-fluid
and substrate-fluid interaction potentials. We approximate

the attractive parts of the pair potentials by ¢/ (r) =

128*/—8 ,0°(0? + r?)73. The amplitude is chosen such
that the mtegrated strength of ¢/ equals that of the attrac-
tive contribution of the Lennard-Jones potential obtained
by a strict application of the Weeks-Chandler-Andersen
procedure. This leads to the effective interface potential

Wao(x, 1) = A X Io(x, 1),

o “4)
Io(x, 1) = ] dz ]Q Br(o? + I — P2)3,
where A = 128*/— o%Ap(pie; — pse;) > 0is an effective
Hamaker constant with p, as the number density of the
substrate, and ) denotes the domain occupied by substrate
particles. The effective interface potential of the planar
substrate is W,(I > o) = Am/(12[?), so that [ (Au —

= (A7/(12ApAp))' 3.

In the following, we minimize the functional in Eq. (3)
numerically, which yields the equilibrium interface height
[(x) within mean-field theory which is valid in d = 3 for
complete wetting [10] and filling [9] for the dispersion
forces considered here. For all substrate geometries the
midpoint heights ZSEL(A ) exhibit four different regimes.

The first regime corresponds to the filling of the cavities.
For the case of rectangular grooves and cylindrical pits,
and for D/R large enough, a quasiabrupt, but still continu-
ous filling of the cavities takes place at Au = Auk*(R),
which is shown in the inset of Fig. 2. A similar behavior
has been reported earlier for an isolated rectangular
groove [11]. We find numerically for R/o = 50 that
Aulf(R)~R17°, with an effective exponent & =~
0.035 for both the rectangular grooves and the cylindrical
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FIG. 2 (color). Typical interfacial heights l(p ¢ (measured from
the plane z = 0) at the middle of the cylindrical and parabolic
pits, lﬁ?) (dashed lines), and of the rectangular and parabolic
grooves, lfgo) (solid lines), as a function of Au with C,=1and
C, = 2. Rescaling the variables according to Eq. (1) leads to
data collapse. The inset shows the same data unscaled. The depth
of the cavities is D = 500; pp(g) denotes parabolic pits
(grooves). All lengths are measured in units of o.

pits. The locus of the filling transformation satisfies also
the relation Auf, = 2Auf,. In the case of parabolic cav-
ities, complete filling is described by an effective power
law, [V (Ap, R, D) ~ A=Y ®D) valid for Au = Al
We find the values of the effective exponent y ranging
from ca. 3.1, for R = 2450, to ca. 2.0, for R = 500,
at a cavity depth D = 5000. Moreover, the complete fill-
ing of the parabolic cavities obeys the covariance relation
19(Au, R, D) = IY(An/2, R, D).

In the second, postfilling regime, ie., for Au €
(Apg, Aug;®), the midpoint height for all patterns shows
an almost linear dependence on A i on normal scales. The
morphologies of the liquid films still reflect the geometri-
cal patterns; i.e., there are considerable lateral variations of
the interfacial heights. We find that the slopes of the lfp(?)g
curves scale as R* with a = 2. Thus, combining this fact
with the scaling of the filling chemical potential A uf;¥, we

propose for the functions lg, ¢ in the postfilling regime the
scaling forms given by Eq. (1). The scaling functions A, ,
and the corresponding data collapse upon suitably rescal-
ing the chemical potential are shown in Fig. 2. The scaling
functions A, , in the postfilling regime do not depend on
the cavity depth D and the pattern periodicity P. In the case
of a single cavity, i.e., in the limit P — oo, we obtain the
same curves ZE,QL(A ) as those presented in Fig. 2.

Below a certain value A pé the interface height becomes
de facto flat, denoted as [, , for the respective patterns. In
the case of the rectangular grooves or cylindrical pits, A u?
marks the crossover from the postfilling scaling regime to
the effective planar scaling regime within which the wet-
ting behavior of geometrically patterned substrates can be
mapped onto that of layered flat solids. The upper layer of
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those solids has a thickness D, and its composition is
related to the geometrical parameters R and P. For the
flat interfaces the functional in Eq. (3) reduces to a function
of 1, ,, the minimum of which determines the thicknesses
of the wetting films in this regime. Figure 3 shows the
functions / g(A ) for several values of R and P, as well as
the liquid film thickness /..(Au) adsorbed on the corre-
sponding planar substrate. The rectangular groove (and
cylindrical pit, not shown) geometries lead to the same
power-law behavior as for a flat surface, [, , ~ Ap~'/3,
but with different amplitudes reflecting different effective
Hamaker constants, which depend on the geometry of the
patterns. In order to find the geometrical dependence of the
amplitudes of the scaling laws given above, we mimic
sculptured substrates by layered and flat ersatz solids,
with the effective interface potential W(I > o) =
Z(A°/I* + (A — A°) /(1 + D)?) [12]. The first term is the
effective interface potential of a flat semi-infinite solid with
Hamaker constant A¢ and the second term is the correction
due to the actual bottom part of the substrate, z €
(—o0, —D), with Hamaker constant A. For o < [ < D,
to a good approximation, one may ignore the bottom part
of the substrate [i.e., the second term in W(I > o)] so
that the amplitude is determined by the Hamaker constant
A¢. Consider a lateral unit cell w of this sculptured part of
the substrate (z € [—D, 0]), with w; as its domain occu-
pied by the solid. By requiring W, (x, 1) = W¢,, (x, 1),
we obtain for the effective Hamaker constant A¢ =
Al (X, 1)/ 144, (X, ), where W, is the effective interface
potential generated by the laterally homogeneous top layer
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FIG. 3 (color). Wetting film thickness [, above grooves for
small A u. The symbols represent the midpoint interfacial height
lg)). The solid lines are obtained by minimizing Eq. (3) assuming
I(x) = I,. On the present scales they are indistinguishable from
those for film thicknesses 1%(Aw) on layered and flat ersatz
substrates, with a top layer of height D and an effective Hamaker
constant A° = A®D,, where A is the Hamaker constant of the
solid without grooves. In the inset the vertical axis is rescaled
according to Eq. (6) leading to data collapse within an inter-
mediate regime, the width of which increases as A u¢ — const X
D73 for D — 0. The groove depth is D = 500.

of the layered and flat ersatz substrate; the symbol U
denotes the union of domains. For [ >> ¢ the integrals
Iy, (i = s, 0) can be approximated as

o0 a3 o+ |Ix — x'||?
1, = d 1—-3 .
e j; Zﬁwi(z—zl)6< (z—2)? )
(5

In Eq. (5) the leading term as a function of / renders A¢ =~
AS,/S,, where S; is the surface area of the domain w; N
{(x, z = 0)}. Thus, we obtain A5 ~ A®, for the rectangu-
lar grooves and A¢, = A®, for cylindrical pits. ®, = 1 —
2R/P and ®, = 1 — m(R/P)* are the areal fractions of
solid in the top layer, z = 0, of substrates with rectangular
groove and cylindrical pit patterns, respectively. The thick-
nesses [¢.(Au) of the wetting films on such layered ersatz
substrates, which effectively correspond to arrays of
grooves, are almost indistinguishable from the correspond-
ing ones for /,. In the case of a lattice of cylindrical pits we
observe the same behavior of the corresponding [, curves
(not shown). Therefore, we conclude that, for sufficiently
thick wetting films, /, , obeys the following scaling rela-
tion:

Lyo(Ap, R, P, D) = (O, )31 (Aw), (6)

where /. is the thickness of the wetting film on the planar
substrate. Indeed, after rescaling by the geometry-
dependent factors (@8)_1/ 3, the curves for l, collapse
and, within the numerical precision, coincide with the
curve for [,. This is shown in the inset of Fig. 3.
Equation (6) is reminiscent of the Cassie equation [13]
describing the apparent contact angle on chemically struc-
tured substrates.

As [, reaches the value ~D, i.e.,at Au = A, ~ D3,
a crossover to the planar scaling regime takes place. In the
planar scaling regime, Ay < Au ., the geometrical pat-
terns are irrelevant. This crossover occurs only for long-
ranged dispersion forces. (For short-ranged interactions,
instead, the growth of the wetting film would remain
determined by the areal fraction of solid at z = 0 for all
film thicknesses.) For D — 0, A i, merges with A ¢, and
the width of the effective planar regime, i.e., the range of
applicability of Eq. (6) vanishes. In the case of the para-
bolic pits and grooves, we do not observe the effective
planar scaling regime. There is rather an extended cross-
over region from the postfilling scaling regime to the
planar one, see Fig. 3.

Figure 4 compares our results with the corresponding
experimental data of Ref. [4], in which the adsorption of
methylcyclohexane (MCH) on a silicon substrate sculp-
tured by a hexagonal lattice of parabolic pits has been
studied with the following geometrical parameters: depth
D = 200 A; radius of the pits at the opening R =~ 123 A;
lattice constant P =~ 394 A. As in Ref. [4], we display the
volume I' =T', + I, of adsorbed liquid divided by the
projected area and multiplied by the electron density of
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FIG. 4 (color). Liquid adsorption at parabolic pits. Inset:
I',(AT). Red line—theory; symbols and black lines—experi-

mental data from Ref. [4] (where T, is denoted as I';). AT is
proportional to A (see main text).

the bulk fluid as the sum of the amount I', adsorbed in the
pit, and the amount I', adsorbed above the pit opening. For
MCH we adopt the Lennard-Jones parameters o =
5.511 A and sf/kB = 446 K [14]. Then the relation be-
tween the undersaturation Au and the reservoir-substrate
temperature difference (used in the experiment as a means
to tune the deviation from liquid-vapor coexistence) is
AT = 32.37%‘1{ . Fitting the film thickness on the planar

substrate to the corresponding experimental curve fixes the
value of the Hamaker constant. For the liquid-vapor sur-
face tension of MCH we use o, = 22.72%‘11 for T =
30 °C [15]. Adjusting the geometry of the patterns to the
experimental ones we calculate I', and I, as functions of
AT. We emphasize that at this stage there are no free
parameters left in the model.

The resulting curves are shown in Fig. 4. For both
quantities we obtain good quantitative agreement with
the experimental results. In the filling regime (5 K =
AT = 8 K) the calculated I',(AT) exhibits a power-law
behavior I', o« AT~#» with an effective exponent S, =
2.4. The apparent disagreement with the value B, =~ 0.76
used in Ref. [4] can be explained by the mislocation of the
filling regime on the experimental I",(AT) curve due to the
large error bars for the data points at large AT. The weak
crossover at AT = 8 K corresponds to the disappearance
of the interfacial meniscus, so that for larger values of AT
the interface follows the shape of the substrate. We have
found that for larger cavities this crossover becomes more
pronounced and for sufficiently large D and R we obtain
the exponent 8, = 3.4. Thus, our results suggest that, in
order to observe experimentally a more pronounced effec-
tive power law describing the filling of the cavities, much
deeper and larger pits should be studied. There seems to be
a difference between the behavior of the theoretical and
experimental I', for large AT. However, for such large

undersaturations the wetting film is only ca. 10 A thick,
causing rather large error bars (actually larger [16] than
those presented in the inset of Fig. 4) for extracting values
for the adsorption from the scattering data.

In summary, as a function of undersaturation, we have
studied complete wetting of four classes of substrates
structured by one- and two-dimensional periodic patterns
of fixed depth and we have identified four scaling regimes.
The filling and the postfilling evolutions of the interfacial
profiles do not depend on the periodicity of the patterns,
but are determined by a single isolated cavity. For suffi-
ciently deep structures there exists a range of undersatura-
tions, in which the midpoint interfacial heights, obtained
for different patterns, can be expressed in terms of a single
scaling function. For small undersaturations, the single-
cavity behavior crosses over to one dominated by the
presence of many of them, for which the interfacial thick-
ness increases as on a planar substrate, but characterized by
an effective geometry-dependent Hamaker constant.
Ultimately, for very small undersaturations the wetting
film thickness becomes independent of the geometrical
substrate structures.
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