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The subdiffusion of a stochastic single file is interpreted as a jumping process. Contrary to the current
continuous time random walk models, its statistics is characterized by finite averages of the jumping times
and square displacements. Subdiffusion is then related to a persistent anticorrelation of the jump
sequences. In continuous time representation, this corresponds to negative power-law velocity autocorre-
lations, attributable to the restricted geometry of the file diffusion.
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Anomalous diffusion [1,2] is by now a well established
law in nonequilibrium statistical mechanics, where the
long-time mean square displacement �x2�t� of a random
variable, for simplicity in one dimension (1D), grows like

 �x2�t� � h�x�t� � x�0��2i � 2D�t� �t! 1� (1)

with either �< 1 (subdiffusion) or �> 1 (superdiffusion);
by contrast, the more popular Einstein relation with � � 1
is termed the normal diffusion law. The evidence for
natural phenomena exhibiting anomalous diffusion with
� � 1 has grown so compelling as to prompt punchlines
such as ‘‘anomalous is normal’’ [3].

The key ingredients responsible for anomalous diffusion
are best identified in terms of a random walk description,
where the diffusive process x�t� evolves in time stepwise,
by taking jumps of random length j�j in either direction, at
random times. Anomalous diffusion is characterized by
vastly sparse waiting times � between consecutive jumps
(subdiffusion) or abnormally long jumps (superdiffusion)
[1]; moreover, the predominance of such exceedingly large
jumps induces strong ‘‘memory effects’’ in the diffusive
dynamics [4,5].

These conditions have been rigorously expressed in the
context of the continuous time random walk (CTRW)
theory [6]. Here a jumping process is defined through
two probability densities P�j�j� and P���, which determine
the length and time of the jump, respectively: The nth jump
is defined by picking at random a waiting time �n and a
displacement �n. The anomalous diffusion of a CTRW
requires that these distributions decay like power laws,
say, P��� / ��1�g and P�j�j� / j�j�1�f. If the jump
lengths and times are uncorrelated, we have the following
rule [7]: g < 1, f > 2 subdiffusion; f < 2, g > 1 super-
diffusion; if both g < 1 and f < 2, then f < 2g, subdiffu-
sion and f > 2g, superdiffusion. In other words,
anomalous diffusion implies diverging waiting times for
�< 1 and diverging mean square displacements for �>
1; if both quantities diverge, exceedingly large waiting
times (displacements) are the prevalent feature of a sub-
diffusive (superdiffusive) process. Finally, in the case f �
2g with g < 1, f < 2, marginal normal diffusion is re-

stored. Most remarkably, normal diffusion with f � 2g
always occurs also when � and � are correlated through
a subordinated Brownian motion [8].

Jumping processes in a variety of natural systems are
claimed to combine anomalous diffusion and power-law
jump distributions [5,9]. However, establishing such power
laws is a difficult experimental task and the outcome can
often be disputed. For this reason, we turned our attention
to a 1D subdiffusive system with � � 1

2 , the stochastic
single file (SF), which is relatively easy to handle both
mathematically and numerically. Our conclusion is that SF
diffusion does not fit the CTRW criterion for anomalous
diffusion but, rather, points to a different class of subdiffu-
sive systems.

We considered a file of N indistinguishable, unit-mass
Brownian particles moving on a circle of length L; if the
particle interaction is hard-core (zero radius), the file con-
stituents can be labeled according to a given ordered
sequence and the long-time diffusion of an individual
particle gets strongly suppressed [10]. In the thermody-
namic limit (L;N ! 1 with constant density � � N=L),
the mean square displacement of each file particle can be
calculated analytically [10–12]. The subdiffusion law of a
SF of Brownian particles with damping constant � at
temperature T can be expressed in terms of the free-
particle diffusion constant D0 � kT=�, that is [13],

 �x2�t� � 2
��������������
D0t=�

q
=� �t! 1�: (2)

The SF regime (2), D1=2 �
�������������
D0=�

p
=�, has been observed

both numerically [12,14] and experimentally [15,16].
To break up the continuous SF dynamics into discrete

jumps, we introduced an ad hoc impact representation. We
set the time origin t � 0 after an adequate thermalization
transient and traced the diffusing trajectory of, say, the ith
particle until it underwent its nth collision at point x�i�n �
xi�t

�i�
n � and time t�i�n ; the time interval ��i�n � t�i�n � t

�i�
n�1, with

t�i�0 � 0, denotes the duration of the nth jump of the ith
particle; analogously, ��i�n � x�i�n � x

�i�
n�1 defines the dis-

placement associated with the jump and j��i�n j is its length.
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Finally, we ensemble (or file) averaged over the jumps of
impact order n, �n � h�

�i�
n i and �2

n � h�
2�i�
n i, irrespective

of their duration (asynchronous averaging) [17].
We anticipate here three conclusions of our simulation

work: (a) The jump size distributions P��� and P�j�j�
decay according to CTRW power laws with g � 1

2 and f �
1, only up to a certain value of � or j�j, above which they
sharply drop to zero. Such tail truncations occur when the
file particles diffuse from one neighbor to the other,
namely, for times �d and mean square displacements �d
such that�2

d � 2D0�d � 2=�2. (b) The limits limn!1�n �
h�i and limn!1�

2
n � h�

2i are finite, with h�2i � 2D0h�i,
and set the characteristic time and length scales of the
SF collisional dynamics. (c) The stationary autocorrela-
tion functions C���n� � h�

�i�
n0
��i�n0�ni � �

2
n0

and C���n� �

h��i�n0
��i�n0�ni, with n0 ! 1, develop persistent tails, respec-

tively, C���n� / n�1=2 and C���n� / �n
�3=2. The �-�

cross correlations in the stationary regime are compatible
with the subordinated Brownian dynamics [8].

Properties (a) and (b) seem at odds with a CTRW
interpretation of SF diffusion. Regarding property (a),
even on assuming ideal power-law decays for the jump
densities (e.g., as �d, �2

d ! 1 for �! 0), the relevant
exponents g and f would obey the normal diffusion con-
dition f � 2g. On the other hand, the finiteness of the
jump parameters h�i and h�2i [property (b)] seems to
indicate a bona fide normal diffusion. The solution to this
apparent paradox is in property (c): At variance with the
CTRW models, here the jump sequence is characterized by
strong memory effects; in particular, the jump displace-
ments �n are anticorrelated. The connection between per-
sistent jump autocorrelation and SF diffusion hinges on the
generalization of Kubo’s theorem presented below; as a
consequence, SF diffusion seems to tell us more about
subdiffusion than initially expected.

Let us consider a continuous differentiable stochastic
process x�t� with h _x�t�i � 0. Kubo’s relation [18] between
the mean square displacement �x2�t� [Eq. (1)] and the
corresponding stationary autocorrelation function C�t� �
h _x�t� _x�0�i can be written for t! 1 as

 

1

2

d
dt
�x2�t� � �D�t��1 � I�t� �

Z t

0
C���d�: (3)

If the integral I�t� converges to a positive value I�1�, then
the identity (3) is satisfied for � � 1 and D1 � I�1�: x�t�
diffuses according to Einstein’s law.

Suppose, however, that the _x autocorrelation C�t� tends
to zero like C�t� 	 c�t��; we are presented with two addi-
tional possibilities: (i) I�t� diverges for t! 1, i.e., 0 

�< 1; (ii) I�1� � 0, i.e., 1<�< 2. In both cases, diffu-
sion is anomalous, since in view of Eq. (3)

 � � 2� �; c� � ���� 1�D�: (4)

Case (i): Superdiffusive, 1<�< 2.—The process _x�t�
is characterized by a persistent positive autocorrelation

with c� > 0; x�t� tends to retain its velocity, thus executing
exceedingly long jumps.

Case (ii): Subdiffusive, 0<�< 1.—The tail of C�t� is
always negative, c� < 0; it denotes a persistent _x anticor-
relation typical of constrained geometries: An initial ve-
locity _x�0� is likely to be countered by a backflow velocity
of opposite sign.

The argument above can be specialized to handle also
the limit of weakly anomalous diffusion, �! 1� , that is,
�! 1� . For t! 1, we can assume �x2�t� / tln�t, with
� > 0 for case (i) and � < 0 for case (ii). The identity (3) is
satisfied for C�t� / �ln��1t=t (see Ref. [4] for an ex-
ample). Another special limit occurs for �! 2, that is,
for �! 0; the logarithmic subdiffusion law �x2�t� / ln�t,
� > 0 (Sinai’s diffusion), corresponds to the strong anti-
correlation tail C�t� / �ln��1t=t2.

For a stochastic SF, � � 1
2 , this generalization of

Kubo’s theorem predicts a negative power-law tail of the
velocity autocorrelation function C�t� with � � 3

2 andR
1
0 C���d� � 0 (see also [19]). Our numerical simulations

support this conclusion. In Fig. 1, we display the curves
�x2�t� and C�t� for different � and �. In Fig. 1(a), the
crossover of �x2�t� from normal diffusion at short times
[�x2�t� � 2D0t, free diffusing particles] to subdiffusion
with � � 1

2 at large times [Eq. (2), SF diffusion] occurs
for t	 �d, where �d is the average time a single colliding
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FIG. 1 (color online). Single file diffusion: (a) �x2�t�; (b) C�t�
for different � and �, both vs t and rescaled like in Eqs. (8) and
(9). SF diffusion law (2) (dotted line) and free-particle nor-
mal diffusion �x2�t� � 2D0t (dashed line) are displayed for a
comparison in (a). Inset: log-log plot of the negative C�t�
tails; the solid line is the predicted tail �C�t�=�D0��

2 ’
�t=�d�

�3=2=�4
����
�
p
�. We simulated the SF dynamics by integrating

N � 5 103 standard Langevin equations for ‘‘nonpassing’’
particles driven by independent zero-mean, delta-correlated
Gaussian noises with kT � 1.
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pair takes to diffuse against its neighbors. In Fig. 1(b), the
negative tails of the corresponding C�t� are apparent and
compare well with the estimate of Eq. (4) for D1=2 ��������������
D0=�

p
=� (see inset).

We now discuss the SF dynamics in impact representa-
tion. In Fig. 2, we summarize the jump statistics by looking
at the jump length j�j [Fig. 2(a)] and duration � [Fig. 2(b)].
The distributions P��� and P�j�j� decay, respectively, like
��3=2 for � < �d and ��2 for j�j2 <�2

d. Such power laws
have been predicted in the earlier literature [20]. Indeed,
one can map the collisions of a particle pair of coordinates
xi�t� and xi�1�t� into the zero crossings of the Brownian
process xi�1�t� � xi�t�; in CTRW notation, �n and �n are
thus correlated through a subordinated Brownian motion
[8]. However, deviations from these ideal power laws occur
at both the short and the large scales (see insets in Fig. 2).
In particular, the ��3=2 law for P��� is not tenable for times
shorter than �b � ��1, when the particle motion is ballistic
[20], and for times longer than �d � �D0�2��1, when the
collisions of the selected pair with its neighbors cannot be
neglected. This geometric constraint is responsible for the
sharp truncation of the � and � distribution tails and,
consequently, for the finite values of h�i and h�2i. For
�d � �b, one obtains the working approximation

 h�i �
Z �d

�b
�P���d�=

Z �d

�b
P���d� � ��

������
kT
p
��1: (5)

Moreover, recalling the definition of j�j, as the absolute
displacement of an individual particle between two suc-
cessive collisions, we conclude that

 h�2i � 2
������
kT
p

=����: (6)

Our estimate for h�i coincides with the time a ballistic
particle with thermal speed

������
kT
p

takes to cross the mean
interparticle distance ��1. When comparing estimates (5)
and (6) with the data in Fig. 2, one notes that �n and �2

n
approach their asymptotic values only after a time transient
of the order of �d, that is, a jump sequence of length nd �
�d=h�i � �=��

������
kT
p
�.

The finite distribution moments h�i and h�2i allow us to
rederive the SF diffusion law (2). In Fig. 3, we added up n
consecutive jumps of the same particle after a transient of
n0 jumps and computed the file averages

 t�n� �
�Xn
k�1

t�i�n0�k

�
; x2�n� �

��Xn
k�1

��i�n0�k

�
2
�
: (7)

The phenomenological relation

 t�n� � h�in � �d�n=nd� (8)

fits well the curves of the inset in Fig. 3 for n > nd,
regardless of the transient cutoff n0. An analytical estimate
for x2�n� can be obtained from de Gennes’ theory of
reptation of a polymer chain [21], namely,

 x2�n� � x2
d�n=nd�

1=2; (9)

with x2
d � �2

d=
����
�
p

. This formula fits well the asymptotic n
dependence of the x2�n� curves in Fig. 3. For n0 � nd, the
diffusion crossover of Fig. 1 becomes also apparent: x2�n�
increases first linear in n for n� nd, x2�n� � h�2in and
then proportional to n1=2 for n� nd [Eq. (9)]. On combin-
ing Eqs. (8) and (9), we eventually recover the SF law (2) in
the impact representation.

Finally, we present our results for the jump autocorrela-
tions. The tails of both C���n� and C���n� in Fig. 4 clearly
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FIG. 2 (color online). Jump statistics: (a) �2
n vs n; (b) �n vs n,

for � and � like in Fig. 1, both rescaled with rescaling parame-
ters h�2i [Eq. (6)] and h�i [Eq. (5)]. Insets: (a) P���; and
(b) P�j�j� for � � 3 and different �; the power laws ��3=2

and j�j�2 are also shown (dashed lines); the vertical arrows
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(same color as for the relevant curves). Other simulation pa-
rameters are kT � 1 and N � 5 103.
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FIG. 3 (color online). Anomalous diffusion: main panel: x2�n�
vs n; inset: t�n� vs n, for n0 � 0 (upper curve sets) and n0 � 250
(lower curve sets); � and � are chosen as in Figs. 1 and 2. Both
quantities have been rescaled for a comparison with Eqs. (8) and
(9) (dotted lines). The dashed line in the main panel is the normal
diffusion law x2�n� � h�2in (see text). Other simulation parame-
ters are kT � 1 and N � 5 103.
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cross over from an exponential to a power-law decay at
around n	 nd. This mechanism is closely connected with
the onset of the SF diffusion. On introducing the ‘‘symme-
trized’’ autocorrelation function ~C���n� � C���n� �
1
2�0;nh�2i, definition (7) of x2�n� in the stationary regime
is equivalent to

 x2�n� � 2
Xn�1

k�0

�n� k� ~C���k�: (10)

The asymptotic result (9) can thus be recovered only under
the two simultaneous conditions

 

X1
k�0

~C���k� � 0; C���n� ’ �
�2
b

4
����
�
p

�
nd
n

�
3=2
; (11)

with �2
b � 2D0�b � 2kT=�2, both verified in Fig. 4(a).

Analogously, for the slow C���n� tail one comes up with

 C���n� ’
h�i2

2
����
�
p

�
nd
n

�
1=2
; (12)

also plotted in Fig. 4(b). Negative power-law tails of the
velocity and/or the jump autocorrelation functions have
been predicted, indeed, for other 1D systems, such as
Jepsen’s gas [11,22] and files of interacting particles
[23], and, much earlier, also for the diffusive dynamics of
a concentrated lattice gas in 3D [24]. Note, however, that
both conditions in Eq. (11)—equivalent to Eqs. (3) and (4)

in continuous time representation—are required to predict
SF diffusion.

In conclusion, SF diffusion is tied to the restricted file
geometry that confines the diffusion of individual particles
rather than to the effect of long trapping (waiting) times.
Such a mechanism, different but not necessarily in conflict
with the CTRW scheme, is likely to play a key role, e.g., in
the particle transport through narrow channels in biology
and nanodevices [25]; it can also be generalized to describe
the spatial dispersion of (assemblies of) elastic (polymer)
chains on a disordered substrate [21].
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