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Systematic nonlinear space-charge resonances may cause substantial emittance growth in the non-
scaling fixed-field alternating-gradient (FFAG) accelerators. To avoid systematic nonlinear space-charge
resonances, the phase advance of each nonscaling FFAG cell must avoid �=2 and �=3. Using multi-
particle numerical simulations, we empirically obtain a minimum tune ramp rate vs the systematic 4th
order space-charge resonance strength. We also find that the emittance growth obeys a simple scaling
property when the betatron tunes cross the linear half-integer and sum resonances.
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There is a recent revival of interests in using the fixed-
field alternating-gradient accelerators (FFAG) for proton
drivers [1], which may find applications in muon col-
liders, neutrino factory, neutron sources, energy ampli-
fiers, etc. ‘‘The FFAG research in the United States fo-
cuses on the nonscaling design’’ [2,3] that requires
a much smaller magnet aperture. Unfortunately, the beta-
tron tunes of the nonscaling FFAG cannot be maintained
at a value within two integers. The betatron tunes de-
crease because the focusing field is kept nearly constant
while the beam momentum increases at a rate of d�

dn �

�� dE=dn�2E , where dE=dn is the energy gain in one revo-

lution. Hereafter, the tune-ramp rate refers to the rate
change of the ‘‘bare’’ betatron tunes per revolution. Even
if the energy gain per revolution could reach 1 MeV,
the tune-ramp rate would be less than 0.02. The FFAG
accelerator may encounter many technical challenges in
rf, magnet, and vacuum technologies. However, the most
fundamental issue is the emittance blowup due to the
self-space-charge force, which cannot be corrected. Here
the rms beam emittance is defined as the rms phase-space
area occupied by the beam particles.

Many sources cause emittance growth in circular accel-
erators, including the half-integer stop band that can per-
turb the beam envelope function [4–6], the Montague
resonance [7], and the sum resonance induced by the
random skew-quadrupole-field [8]. Although there are
some studies on the effects of resonance crossing in the
FFAG [3,9], these works examine only nonsystematic
resonances, which are in principle correctable. This
Letter intends to study an emittance growth mechanism
caused by the modulation of the self space-charge force
due to the repeated beam size variation in accelerator
lattice cells. Even if the FFAG accelerator is perfectly
designed and constructed, a sizable emittance dilution
can occur when the betatron tunes (spectra of beam mo-
tion) encounter resonance conditions driven by the self
space-charge force.

To study the emittance growth, we construct a multi-
particle simulation program to simulate the evolution of

beam emittances. The accelerator lattice is P � 24 FODO
cells, made of the focusing and defocusing quadrupoles
separated by bending dipoles or drift spaces. As the beam
particles are injected and accumulated, particles in the
accelerator experience a space-charge force proportional
to the beam intensity. Our numerical-simulation algorithm
[8] consists of (1) a linear transport for phase-space coor-
dinates in a half FODO cell by a linear transfer matrix, (2) a
space-charge force kick to the phase-space coordinates,
(3) a linear transport by the second half of the FODO
cell transfer matrix, and (4) a space-charge force kick at
the end of the basic FODO cell. This procedure is carried
out for 24 FODO cells in one revolution.

With a Gaussian charge distribution ��x;z�� Ne
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where �x and �z are the horizontal and vertical rms beam
radii,N � NB=�

�������
2�
p

�s� is the charge per unit length,NB is
the number of particles in a bunch, �s is the longitudinal
rms bunch length, Ksc � 2Nr0=��2�3� is the generalized
space-charge perveance, and r0 � 1:5347� 10�18 m is
the classical radius of the proton. The horizontal rms
beam radius is composed of both the betatron and off-
momentum contributions.

Because of the space-charge potential, each particle
experiences a space-charge kick:
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where l is the length of the half cell, and the exponential
form is obtained by expanding the space-charge potential
of Eq. (1) up to the second order in round beam geometry
and exponentiated to produce zero tune shift for large
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amplitude particles. The linear space-charge tune shift
is ��x;sc �

1
4�

H �x�s�Ksc

�x��x��z�
ds, ��z;sc �

1
4�

H �z�s�Ksc

�z��x��z�
ds,

where �x�s� and �z�s� are the betatron amplitude func-
tions, and ��sc is the horizontal or the vertical linear space-
charge tune shift at initial beam emittances.

The space-charge force is approximated by 48 localized
kicks per revolution in our numerical model. The rms beam
radii calculated from the multiparticle phase-space distri-
bution are used for space-charge kicks in the next revolu-
tion. Although the distribution function may become non-
Gaussian, our space-charge kick remains in the Gaussian
beam approximation. This simplified space-charge model
is implemented to speed up calculations for systematic
parametric study. When the accelerator is free from ran-
dom errors, only systematic resonances can affect particle
motion. Systematic nonlinear space-charge resonances are
4�x � P, 4�z � P, 2�x � 2�z � P, 6�x � P, etc., where
P � 24 in our model.

To study the effect of the systematic nonlinear space-
charge force on the nonscaling FFAG, we consider a beam
with 100 injection turns and an initial rms emittance of
8:5� mm mrad such that ��x;sc � ��z;sc � 0:109. The
left plots of Fig. 1 show the evolution of the betatron tunes
of small-amplitude particles and the rms beam emittances
for the cases, where the bare betatron tunes are linearly
ramped downward from (6.25, 6.20) to (5.85, 5.80) [see the
blue color points], upward from (5.85, 5.80) to (6.25, 6.20)
[see the red color points], and upward or downward be-
tween (6.85, 6.80) and (7.25, 7.20) [see the green color
curves] from 200 to 1000 revolutions.

Note that the emittance growth is severe for the down
ramp through the systematic space-charge resonance, be-
cause the betatron tunes of small-amplitude particles stay
longer at the resonance (see the top-left plot of Fig. 1; see
also Ref. [11]). The normalized phase-space distributions

at 1000 revolution are shown in the right plots of Fig. 1.
When the beam particle approaches the 4�x � 24 and
4�z � 24 resonances, small-amplitude particles are trans-
ported and trapped onto the 4th order resonance islands,
and decohere into a ring in the phase space as shown in the
right plots of Fig. 1. Ramping through a nonsystematic
resonance does not cause any emittance growth (see the
green curves in Fig. 1). Existence of the 4th order system-
atic space-charge resonance islands is known to exist in the
self-consistent space-charge model calculations [12], nu-
merical simulations and experimental measurements at the
KEK PS [13,14].

We define the emittance growth factor (EGF) as the ratio
of the final emittance to the initial. The EGF does not
depend on the horizontal or vertical emittance. When
crossing a horizontal resonance, the EGF corresponds to
the horizontal emittance growth, and vice versa. The bot-
tom plot of Fig. 2 shows the EGF as a function of the tune-
ramp rate: ��=�n. Note that the EGF shows a power law,
i.e., the EGF is proportional to ���=�n�a in the low cross-
ing rate regime, where a � �0:62. The EGF depends also
on the strength of the space-charge force. Using the ��sc as
the scaling parameter, the top plot of Fig. 2 shows the EGF
as a function of ��sc for fixed tune-ramp rates.

The 4th order space-charge potential in Eq. (1) can be
expanded in action-angle phase-space coordinates:
V4 �Jx; Jz;  x;  z; �� � G4;0;l J

2
x cos�4 x � l� � �x� �

G0;4;l J2
z cos �4 z � l� � �z� � G2;2;l Jx Jz cos�2 x �

2 z � l� � ��� � G2;�2;lJxJz cos�2 x � 2 z � l� �
���, where (Jx,  x) and (Jz,  z) are the horizontal and
vertical action-angle coordinates, and �’s are the phase of
the resonance strength parameter. The resonance strength
Gm;n;l depends on the lattice design and the space-charge
perveance, [15]. For a beam with equal emittances 	 �
	x � 	z, one finds Gm;n;l � gm;n;l�KscC=�8�	

2�	, where C
is the circumference of the accelerator, the dimensionless
reduced resonance strength gm;n;l depends essentially on

FIG. 1 (color online). Left plots: The evolution of the small-
amplitude betatron tunes and the normalized emittances vs revo-
lution numbers for a beam with ��sc � 0:109 while ramping the
bare betatron tunes through the systematic space-charge non-
linear resonances. Right plots: the normalized phase-space maps
at the end of down ramp.

FIG. 2 (color online). Top: The EGF, defined as the ratio of the
final emittance to the initial, vs ��sc for crossing 4�x � P or
4�z � P resonance. Bottom: The EGF vs the resonance crossing
rate, ��=�n.
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the accelerator lattice functions, and KscC=�8�	� � ��sc.
A larger variation in the betatron amplitude functions gives
a larger reduced resonance strength.

Define the critical tune-ramp rate as the extrapolation of
each EGF curve cutting the horizontal axis in the bottom
plot of Fig. 2. At the critical tune-ramp rate, the EGF is
about 1.2. Figure 3 shows the critical tune-ramp rate vs the
reduced resonance strength g0;4;l, obtained by varying the
betatron amplitude functions at the space-charge kick lo-
cations. The error bar reflects the uncertainty in the linear
extrapolation. Since the EGF curve has a sharper turn for a
smaller ��sc, the corresponding error bar is smaller. Given
��sc and d�=dn, one obtains the maximum tolerable
reduced 4th order resonance strength, which constrains
the accelerator lattice design.

Besides these systematic space-charge resonances, ran-
dom errors play an important role in particle beam dynam-
ics. Since the dipole field errors affect the closed orbit,
which is relevant to the beam emittance at injection, we
assume that the closed orbit is properly corrected. The
random quadrupoles break the superperiodicity, and pro-
duce half-integer stop bands. The random skew quadru-
poles introduce both the sum and difference coupling
resonances, found to be important in beam-emittance
growth in fast ramping accelerators [8].

For the random quadrupole error, the stop-band width,
defined as the Fourier amplitude of quadrupole-field error
at the pth harmonic, is

 Gp �
1

2�

I
��s��K�s�e�ip
�s�ds; (2)

where ��s� is either the horizontal or vertical betatron
amplitude function, �K�s� is the quadrupole-field error,

�s� � �1=��

R
s
0 ds=��s�, and s is the longitudinal coor-

dinate. When the betatron tune � of a particle sits at p=2,
the action of the particle will grow exponentially as
expf2�jGpjng, where n is the revolution number.
Random skew quadrupoles produces both sum and differ-
ence resonances. When the betatron tunes are ramped

through many integers, the sum resonance is unavoidable.
The stop-band width of the sum resonance is the Fourier
amplitude of the skew-quadrupole error field A�s�: [5] ,

 G1;1;l �
1

2�

I �����������������������
�x�s��z�s�

q
A�s�ei�1;1;l�s�ds; (3)

where �x�s� and �z�s� are the horizontal and the vertical
betatron amplitude functions, �1;1;l�s� �  x�s� �  z�s� �
��x � �z � l�s=R is the sum-resonance phase function,
 x�s� and  z�s� are the betatron phase functions, and R is
the mean radius of the accelerator. When the betatron tunes
of a particle sit on a sum resonance, both the horizontal and
vertical actions will grow as expf2�jG1;1;ljng.

Let the stop-band width be g � jGpj or g � jG1;1;lj. The
EGF for passing through a resonance is approximately
expfg�ng, where �n is the number of revolutions that
the tunes of beam particles are inside the stop-band width.
Since �n
 g=�d�=dn�, the EGF becomes

 EGF � expf�2�g2=�d�=dn�g: (4)

The EGF is numerically obtained by adding the random
quadrupole and skew-quadrupole kicks to each half cell
[8]. We prepare a beam with ��sc � 0:217. The bare beta-
tron tunes are linearly ramped from (6.85, 7.80) to (5.85,
6.80) in 50 revolutions. The horizontal EGF is about 1.5 for
the 4�x � P structure resonance. The EGF is separately
obtained for quadrupole and skew-quadrupole errors which
are randomly generated by different random seeds. A stop-
band width is then calculated from each error seed.
Figure 4 shows the EGF as a function of the stop-band
width for both the quadrupole and skew-quadrupole errors.

Figure 5 shows ln�EGF� as a function of 2�g2=�d�=dn�
for d�=dn � 0:01 and 0.02 in the down-ramp condition.
The parameter � is larger than 1 in the down ramp because
the betatron tunes of small-amplitude particles stay longer
at the resonance resulting from the space-charge tune shift.
The slope gives � � 3:5 for the sum resonance, and 1.5 for
the half-integer stop bands (shown as dashed lines in
Fig. 5). The slope � depends also slightly on the space-
charge tune shift parameter ��sc.

In conclusion, we use the rms space-charge potential
model to carry out parametric study on emittance growth
due to systematic space-charge resonances. Even for a
perfectly designed and constructed FFAG, the systematic
fourth order nonlinear space-charge resonances at 4�x � P
and 4�z � P, and the 6th order systematic nonlinear reso-
nance crossing at 6�x � P and 6�z � P can cause sub-
stantial emittance growth. Using multiparticle numerical
simulations, we empirically obtain a minimum (critical)
tune-ramp rate vs the resonance strength when crossing the
systematic 4th order space-charge resonance. To avoid the
4th and 6th order systematic resonances, the phase advance
of each periodic cell should avoid phase advance �=2 or
�=3 per cell. Thus the momentum acceptance of the non-
scaling FFAG accelerator may be restricted. For a given
tune-ramp rate, we can find a critical systematic 4th order

FIG. 3 (color online). The critical resonance crossing rate,
(��=�n�critical, defined as the extrapolation of the EGF cutting
the horizontal axis in the bottom plot of Fig. 2, is shown as a
function of the reduced resonance strength g0;4;l for crossing
4�z � P resonance.
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space-charge resonance strength, which can be reduced by
designing a smoother beam envelope function.

In reality, the linear random imperfections such as the
dipole field errors, quadrupole-field errors, and skew
quadrupole-field errors are important in emittance growth
[8]. Emittance growth is inevitable if the tune is ramped
through integer and half-integer resonances, unless stop
band correction is implemented. The EGF can be ex-
pressed as expf�2�g2=�d�=dn�g, where g is the stop-band
width, d�=dn is the tune-ramp rate, and � is a constant.

The EGF scaling law sets tolerances on quadrupole-field
error and quadrupole roll in the accelerator.

Our analysis is also applicable to the FFAG for the ac-
celeration of muons. Since the mass of muon is about one
fifth of the proton mass, the acceleration rate for muon is
much higher, and the corresponding tune-ramp rate is
much higher. Thus our analysis does not pose serious limi-
tations to FFAG for muon acceleration.

This work is supported in part by Grants from the
U. S. Department of Energy under Contract No. DE-
FG0292ER40747 and the National Science Foundation
NSF No. PHY-0552389. I also thank support from the
Indiana University, USA and the Humboldt Foundation
in Germany.

[1] J. S. Berg et al., in Proceedings of the 17th Cyclotron
Conference, Tokyo, Japan, 2004, http://www.jacow.org/.

[2] A. Ruggiero, BNL BNL AP-Technote: C-A/AP/#219,
2005.

[3] J. S. Berg et al., Phys. Rev. ST Accel. Beams 9, 011001
(2006).

[4] F. J. Sacherer, Ph.D. Thesis, UC Berkeley [Report
No. UCRL-18454, UC Berkeley, 1968].

[5] S. Y. Lee, Accelerator Physics (World Scientific,
Singapore, 2004), 2nd ed.

[6] S. Cousineau, Ph.D. Thesis, Indiana University, 2002;
S. Cousineau et al., Phys. Rev. ST Accel. Beams 6,
034205 (2003).

[7] B. W. Montague, CERN CERN-Report No. 68-38, 1968;
I. Hofmann et al., AIP Conf. Proceedings No. 773 (AIP,
New York, 2004), p. 169; I. Hofmann et al., Proceedings
of the 2005 Particle Accelerator Conference (IEEE,
New York, 2005), p. 330.

[8] X. Huang et al., Phys. Rev. ST Accel. Beams 9, 014202
(2006).

[9] A. Chao and M. Month, Nucl. Instrum. Methods 121, 129
(1974); M. Aiba and S. Machida, Proceedings of the
European Particle Accelerator Conference 2004 (EPAC,
Luzerne, Switzerland, 2004), p. 2119.

[10] S. Kheifets, PETRA Note 119 (1976).
[11] I. Hofmann and K. Beckert, IEEE Trans. Nucl. Sci. NS-32,

2264 (1985), http://www.jacow.org/.
[12] Oliver Boine-Frankenheim (private communications); see

also, I. Hofmann, G. Franchetti, and A. Fedotov, AIP
Conf. Proceedings 642 (AIP, New York, 2002), p. 248.

[13] S. Machida, Nucl. Instrum. Methods Phys. Res., Sect. A
384, 316 (1997).

[14] S. Igarashi et al., Proceedings of the Particle Accelerator
Conference 2003 (IEEE, New York, 2003), p. 2610.

[15] The space-charge potential for the x2z2 term is normally
uniform along the accelerator. Since the Fourier transform
of a constant at a nonzero harmonic is zero, the resonance
strength of 2�x � 2�z � P is small. On the other hand, the
Montague resonance strength at 2�x � 2�z � 0 is given
by the zeroth harmonic of the x2z2 term in the space-
charge potential; its strength is large. But, we can easily
design the accelerator lattice to avoid the Montague reso-
nance condition.

FIG. 4. The EGF is plotted as a function of the stop-band width
for the random quadrupole and skew-quadrupole errors. The
EGF obeys the scaling property: expf�2�g2=�d�=dn�g, where
� is a constant, g is the stop-band width, and d�=dn is the tune-
ramp rate. The EGF for the horizontal plane is dominated by the
crossing of the systematic space-charge resonance at 4�x � P.
Since the vertical tune does not cross the systematic space-
charge resonance, its EGF arises solely from the random errors.
The random seed used in the quadrupole error happens to
produce the stop-band widths (0.017, 0.047) for the horizontal
and vertical planes. The 	x growth factor (shown as circle
symbols) stops at a stop-band width of about 0.017, because
the vertical EGF becomes 3.08 and beam loss occurs.

FIG. 5. The ln(emittance growth factor) for random quadru-
pole or skew-quadrupole errors is shown as a function of
2�g2=�d�=dn�, where g is the resonance stop-band width,
d�=dn � 0:01, 0.02 is the tune-ramp rate. The slope is the
parameter �. We find � � 3:5 for the sum resonances, and 1.5
for the half-integer stop bands (see dashed lines). The scaling
law works well for d�=dn � 0:1. At a lower tune-ramp rate, the
EGF may grow faster than exponential. The EGF due to system-
atic space-charge resonances is excluded in this plot.
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