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Decay of Quantum Correlations in Atom Optics Billiards with Chaotic and Mixed Dynamics
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We perform echo spectroscopy on ultracold atoms in atom-optics billiards to study their quantum
dynamics. The detuning of the trapping laser is used to change the “perturbation’’, which causes a decay
in the echo coherence. Two different regimes are observed: first, a perturbative regime in which the decay
of echo coherence is nonmonotonic and partial revivals of coherence are observed in contrast with the
predictions of random matrix theory. These revivals are more pronounced in traps with mixed dynamics as
compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay
becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction
can be made between chaotic traps and traps with mixed dynamics.
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The quantum manifestations of different types of clas-
sical dynamics is still an issue of unsettled debate, since the
unitarity of quantum mechanics is inconsistent with the
classical definition of chaos, i.e., an exponential sensitivity
to initial conditions. Peres suggested that a signature of
quantum chaos is the stability of the dynamics with respect
to small changes in the Hamiltonian [1]. In this framework,
the “fidelity’’ denotes the overlap between a state evolved
by a Hamiltonian H; with the same state evolved by a
slightly perturbed Hamiltonian H| [1]. Fidelity is often
denoted as the Loschmidt Echo, since it is equivalent to
the overlap between an initial state and the same state
evolved forward in time in H; and then backwards in
time in H| [2].

The decay of fidelity in chaotic systems and its depen-
dence on the underlying classical dynamics and the
strength and type of the perturbation have been the topic
of intense theoretical studies in recent years (see Refs. [1—
3] and references therein). However, experimental studies
of chaotic systems are still lacking and so are both theo-
retical and experimental investigations of systems with
mixed dynamics. Of special interest are “‘intermediate’
regimes for which both quantum dynamics and classical
models can be used. Understanding these regimes can shed
light on the relation between classical and quantum prop-
erties of the system.

Ultracold atoms have been used in the past to experi-
mentally study both quantum and classical dynamics.
Quantum dynamics have been studied in driven 1D sys-
tems, where a broad variety of phenomena such as dynami-
cal localization [4], dynamical tunneling [5], and quantum
accelerator modes [6] have been demonstrated. Classical
dynamics of cold atoms has been studied in gravitational
wedge billiards [7] and in soft wall atom-optics billiards
[8]. In these experiments regular, chaotic, and mixed dy-
namics were observed.

In this Letter we use microwave (MW) “‘echo spectros-
copy”’ [9] to experimentally measure quantum dynamics of
ultracold #Rb atoms trapped in atom-optics billiards, with
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underlying chaotic or mixed classical dynamics. Echo
spectroscopy measures the overlap between two initially
identical states evolved in a slightly different Hamiltonian
(and is therefore closely related to the fidelity [10]), but it
overcomes the need for narrow wave packet analysis and
allows the use of thermal ensembles for the study of
quantum dynamics of extremely high (up to ~10%) excited
states [9]. For such high lying states quantum dynamics can
be essentially irreversible even for a closed system, such as
ours. We demonstrate that for our trap the decay of the echo
coherence displays qualitative distinct regimes, depending
on perturbation strength. For weak perturbations, we ob-
serve a “‘perturbative’’ regime in which the decay depends
on the perturbation strength and where partial coherence
(wave packet) revivals are seen even when the underlying
classical dynamics is fully chaotic. This observation is
opposed to the monotonic decay of correlations, predicted
by random matrix theory, reflecting a generic property of
the perturbations associated with the traps.

For stronger perturbations we observe a crossover to a
regime where the decay of the coherence is independent of
the perturbation strength. In this case the decay is mono-
tonic and no revivals are observed. This observation is
explained in terms of a simple semiclassical model.

For traps where the classical motion exhibits a mixed
phase space (i.e., stable “islands” in a chaotic “‘sea’) we
observe more pronounced revivals in the perturbative re-
gime, due to the periodic classical orbits in the islands.
However, a perturbation-independent regime exists also for
these systems, similar to that of traps with fully chaotic
dynamics.

We use 35Rb atoms in a coherent superposition of their
two magnetic-insensitive Zeeman substates of the ground
state. These two levels, |55/, F =2, mp = 0) denoted
[1), and [5S; 5, F = 3, mp = 0) denoted |), are separated
by the hyperfine (HF) energy splitting Egp = hwgp with
wyp = 27 X 3.036 X 10° s7!. The atoms are trapped in a
dipole potential formed by a linearly polarized laser. The
dipole potential is inversely proportional to the trap laser

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.97.104102

PRL 97, 104102 (2006)

PHYSICAL REVIEW LETTERS

week ending
8 SEPTEMBER 2006

detuning A; from the 5§, — 5P5), line, hence it is
slightly different for atoms in |{) and ||). The external
(center of mass) potential depends on the internal (spin)
state, hence the internal and external degrees of freedom
cannot be separated, and the entire Hamiltonian (neglect-
ing interactions between the atoms) is written as

2m

re
H = H){| + (H + Eg)DX1] = [— + vl<x>}|1><u

2
+ [f—m +Vi(x) + EHF}IMI, (1)

where V| and V; are the external potentials for atoms in
states ||) and |1), respectively. These potentials include
the gravitational potential, equal for both states, and the
dipole potential, which can be written as V| and V,;; =
(1+€)V,,, where €= wyr/A; is the perturbation
strength typically 10731072 in our experiments [9]. For
such weak perturbations the transition from quantum (per-
turbative) to classical behavior can be studied for very high
lying exited states.

The eigenenergies of this Hamiltonian consist of two
manifolds (belonging to ||) and |1)) separated in energy by
Eyr. The atoms are initially prepared in their internal
ground state ||) and their total wave function can be written
as ¥ = |]) ® ¢, where i represents the center of mass part
of their wave function. The echo sequence consists of three
short and strong MW pulses, each of which changes only
the internal state of the atoms [9]. First a 77/2 pulse puts the
atoms into a coherent superposition of ||) and |1). After a
time 7 a 7 pulse inverts the populations and after another
time 7 the atoms are irradiated by a second 7/2 pulse. The
populations of |]) and |1) are then measured. If we start
with an eigenstate |n) of H| then the population of |1) after
the echo pulse sequence is [9] P; = 3[1 — Re(Feepo)],
where Fecho = <nl|eiHLT/heiH]T/he*iHlT/hefin'/h|n1> is de-
noted the ‘“echo amplitude”. F.4, = | indicates perfect
coherence and yields P; = 0 and F,, = 0, yielding P; =
0.5 indicates complete loss of coherence. If € = 0 then
internal and center of mass motion degrees of freedom
decouple and Fy, = 1 for all times. When considering
eigenstates the echo amplitude can be written as a time
correlation function F., = e/ (@, (t =0)| ¢,(t =
7)), where |@,(t=0))=e /M n) and |e,(t=
7/h)) = e 7| @, (t = 0)). Therefore, the decay of the
echo coherence corresponds to a decay of quantum corre-
lations due to dynamics in the trap, while it is insensitive to
summation over the thermal ensemble.

In our experiment #Rb atoms are loaded into a far off
resonance optical trap, cooled to a temperature of 20 uK,
and optically pumped into the F = 2 hyperfine state. By
changing the detuning of the trap laser, and simultaneously
adjusting its power, the perturbation strength is controlled,
without changing the trapping potential. After the MW
echo pulses Py, the population of state | 1), is measured
using fluorescence detection, and the signal is normalized
to Py after a short 7 pulse.

The trap is a light-sheet wedge billiard [7], made from
two crossed blue detuned light sheets defining the billiard
walls and where gravity confines the atoms in the vertical
direction [11]. The light sheets have (1/¢*) dimensions of
20 X 250 um, and by the use of cylindrical lenses
mounted on rotational stages, the wedge angle is adjusted
in order to control the classical dynamics. The very elon-
gated shape of the trap allows us to neglect the longitudinal
motion, which has a time scale much longer than the
experiment time. In this experiment the atoms typically
occupy many (up to ~108) states in the trap. The measured
echo signal is the ensemble average of all of them.

As predicted [12] and previously measured [7] the clas-
sical dynamics in the wedge billiard is determined by its
vertex half-angle «. Figures 1(b) and 1(d) present the
Poincaré surface of section for the two wedge billiards of
Fig. 1(a) and 1(c), respectively, used in our experiments.
As seen, the classical dynamics is indeed almost fully
chaotic and mixed for a« =52.5° and « = 31°,
respectively.

In Fig. 2, the decay of the echo signal for different
perturbation strength € is presented for a wedge with a =
52.5°, where the dynamics is almost fully chaotic. For
small perturbations a nonmonotonic decay is seen with a
faint partial revival of correlations for 7 = 15 ms. The
echo (ECH) amplitude of an eigenstate in the perturbative
regime can be rewritten as [10]

Frcu(Imy), 7) = 4Fspy(Imy), 7) — Fepy(lm)), 27) — 2
(2)

Where Fsry = (my| exp(iH;7/h) exp(—iH,7/h)|m,) is the
survival amplitude [9]. The survival amplitude in the base
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FIG. 1 (color online). CCD images of wedge billiards, with
a =52.5° (a) and a = 31° (c), used in our experiments and
their corresponding calculated Poincaré surface of sections,
respectively, indicating chaotic dynamics (b) and mixed dynam-
ics with large islands of stability (d).
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FIG. 2. Echo signal for a light-sheet wedge with chaotic clas-
sical dynamics, for different perturbation strengths (trap laser
wavelength tuned from A = 775.9 to A = 779.7). \diamondsuit:
€e=144X1073, V: e=190X 1073, A: € =243 X 1073,
O: € =3.80X 1073, and M: € = 1.52 X 1072, For small per-
turbations a nonmonotonic decay with revivals around 7 = 7y, is
seen, whereas for large ones a monotonic decay is observed.
Inset: Echo signal for short times. Solid line: P; calculated by
classical model. M: P; measured for a perturbation of € =
1.52 X 1072,

of the eigenfunctions of H;, gives Fgry =
S zn €xp(—i(w, — @,)7)[(m; | n))|>. The expression
[(m; | np|? as a function of E,; — E,| averaged over an
ensemble of n; with approximately the same energy is
known as the smooth part of the local density of states
(LDOS) or the band profile of the overlap matrix between
the perturbed (1) basis and the unperturbed (]) basis [13—
15]. The smooth part of the LDOS can be computed using
classical trajectories [10,13,14], revealing that classical
periodic motion leads to distinct sidebands in the LDOS,
leading to partial revivals in the survival probability and
echo amplitude [10]. The faint revivals of Fig. 2 originate
from the fact that even when the classical motion is fully
chaotic, there exists a characteristic time 7, between en-
counters with the billiard walls, where the perturbation is
located. This again leads to (now broadened) peaks in the
LDOS, and thereby to partial revivals for 7 = 7, [10].
For larger perturbations, Fig. 2 reveals a crossover to a
regime where the echo decay is monotonic and indepen-
dent of perturbation strength. This is evident from Fig. 3, in
which P;(7 = 2.5 ms) is plotted as a function of perturba-
tion strength. It is seen that P; initially grows with pertur-
bation strength but for € > 0.004, P; is roughly constant
[16]. Previously, for sufficiently small perturbations, a
perturbation-independent regime was observed in NMR
polarization echo decay experiments [17,18]. In the
perturbation-independent regime observed here the pertur-
bation is large enough so the overlap of equivalent eigen-
states is small, indicating that the effects of quantization of
the trap levels should not play a role and a classical
description might be possible [2]. Since in our system the

FIG. 3. Echo signal for a time between pulses of 2.5 ms, as a
function of perturbation strength. For a small perturbation the
decay depends strongly on the perturbation strength, whereas for
€ >4 X 1073 the decay is almost independent of perturbation
strength. Dashed line: P; (at 2.5 ms) predicted by the simple
classical model described in the text.

thermal de Broglie wavelength is much smaller than the
billiard’s dimensions, it is possible to approximate the echo
amplitude by a semiclassical propagator [19]. The classical
trajectories contributing to the ensemble average of the
echo amplitude are those that after evolving forward in
time in H; and H), and then backwards in time in H; and
H), return to the vicinity of their initial position. Since H;
and H| are highly different mainly in the vicinity of the
wall, then the action integral along trajectories that hit the
wall during the propagation time yields a very large phase
and their contribution to the ensemble average of the echo
amplitude averages out. Alternatively, classical trajectories
that do not hit the wall do not feel the difference between
the potentials and retrace their forward propagation back-
wards in time causing the action integral to vanish. These
trajectories thus give a perfect contribution to the echo
signal. Therefore, the echo amplitude in the perturbation-
independent regime measures the classical probability that
the particles have not yet hit the wall. The dashed line in
Fig. 3 is a classical estimation of Py(7 = 2.5 ms) calcu-
lated assuming an idealized hard wall wedge populated
with a thermal ensemble of atoms at a temperature of
20 wK, clipped at an energy equal to the depth of the
trap. In the inset of Fig. 2 the classical calculation is shown
together with the measured echo decay for a perturbation
of € = 1.52 X 1072, and reasonable agreement is seen.
To isolate the role of the LDOS we consider next a
similar billiard, but with a wedge angle of a = 31° that
has mixed dynamics (see Fig. 1). A perturbation-
independent regime is also observed here (L1 in Fig. 4),
in which the decay is essentially indistinguishable from
that of the chaotic billiard, as expected from the classical
model given above. The revival for a small perturbation is
more pronounced than for the chaotic motion of Fig. 2, and
the reminiscence of a second revival for 7 = 27, can be
seen indicating that the peak in the LDOS is narrower, due
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FIG. 4. Echo signal for a light-sheet wedge where the classical
phase space is mixed. e: € = 1.44 X 1073. : € = 1.52 X 1072
For the small perturbation a revival that is more pronounced than
the one in the trap with classical chaotic dynamics is observed,
whereas for large perturbations the decay cannot be distin-
guished from the decay in a trap with chaotic dynamics.

to the contributions from the periodic classical motion
within the island.

In previous studies a perturbation-independent decay
rate of fidelity above a certain perturbation strength has
been predicted in a Hamiltonian system [2]. The effect
predicted in [2] is, however, unrelated to what is observed
in this work, since it happens for much longer time scales,
and depends on the classical Lyapunov exponent, whereas
the effect observed here happens at short time scales and is
related to the special nature of the perturbation associated
with atom-optics billiards.

Our results indicate that fingerprints of the classical
dynamics appear in fidelity decays even when the pertur-
bation is distributed throughout the entire billiard wall. The
revivals we observe in the echo signal are sensitive to the
regularity of time intervals between interactions with the
perturbation, which is determined by the type of classical
dynamics governing the system. Since the echo signal is an
ensemble averaged quantity, the full information from the
entire phase space about this regularity is achieved even at
short times. Quantitatively, our results are sensitive to the
existence of elliptical islands around periodic orbits with a
period shorter than the experiment time. We also inves-
tigated the decay of quantum correlations as a result of
more general perturbations, not localized on the billiards
walls and generated with an additional laser field. The
results (to be published in detail elsewhere) confirm that
whenever the perturbation is associated with a short peri-
odic orbit we observe partial revivals of coherence and a
perturbation-independent regime.

In summary, we studied the decay of quantum correla-
tions in atom-optics billiards in which the classical dynam-
ics is chaotic or mixed. We observed two distinct regimes
for the perturbation strength in which the decay was quali-
tatively different. In the perturbative regime the decay rate
increased with perturbation strength and was nonmono-
tonic, with revivals at times corresponding to the typical
time between bounces from the wall. The revivals were

more pronounced in traps with mixed phase space as
compared with traps where the dynamics is almost fully
chaotic.
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