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Distribution of Anomalous Exponents of Natural Images
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Recent studies of correlations of intensity in databases of natural images revealed a remarkable
property. The two point correlations are described in terms of power law behavior, with an exponent
which seems to be robust. In the present Letter we consider the statistical meaning of that result. We study
many individual images of one of the databases considered. We find that the same law characterizing the
correlations in the whole database governs also images randomly chosen from that database, with one es-
sential difference. The exponent characterizing each image is specific and differs from the exponent char-
acterizing the whole database. The distribution of single image exponents has been measured and found to
exhibit a rather heavy tail. The database exponent cannot, thus, be considered as a statistical representative
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of a single image exponent. Possible reasons for the diversity in image exponents are discussed.
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Much attention has been recently focused on the statis-
tical properties of natural images [1—4]. There are a num-
ber of practical reasons that motivate such studies. Images
almost always represent a 2D projection of a 3D environ-
ment. This means that the spatial adjacency relations are
changed [5]. In addition, natural images represent a very
diverse clutter of objects. Thus the statistical properties of
images are closely related to physical and biological sys-
tems where large diversity and strong correlation between
distant objects are present. Another motivation is that
statistical properties of various features in the image enter
as a prior in various image processing and computer vision
tasks. The prior is given as a density function (a probability
distribution function) that characterizes the probability of a
given image to be a “‘real” natural image. Such a charac-
terization is the key to success in various image processing
and computer vision tasks, such as transmission, compres-
sion, and denoising to name just a few. These are related to
the information content of the image. Yet, perhaps more
remarkable are the observations of correlations of the light
intensity that do not seem to be related to information
content in the image. Similar correlations exist in ferro-
magnets at their critical point or in systems of self-
organized criticality. It has been shown by several authors
[1-4] that intensity correlations exhibit scaling and even
more remarkable that scaling showed promise of being
universal. Ruderman and Bialek [1] have considered a set
of images where each image is considered as an array of
pixels in which the light intensity is recorded. After replac-
ing the value of the intensity at each pixel, i, by its
logarithm, ¢(i), the power spectrum of the whole set of
images is taken. The power spectrum is found to be pro-
portional to ¢~2~" where ¢ is the absolute value of the
“momentum’’ vector q, corresponding to the appropriate
Fourier components of the image. Such a behavior is
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typical to the Fourier transform of the spin-spin correlation
function at the point of phase transition. In that case the
exponent 7) is known as the anomalous dimension, is
positive, and is usually not large [6—8]. Such power law
behavior is also characteristic of a system exhibiting self-
organized criticality, such as the Kardar-Parisi-Zhang
(KPZ) system [9-13] in which the relevant real space
correlation corresponds to the typical height variation of
a deposited surface over a distance r. The power spectrum
corresponds to the correlation (iqh_q), where hq is the
Fourier transform of the height function defining the two
dimensional surface. In that case the exponent 7 is nega-
tive, corresponding to the fact that the surface is self-affine.
Grey-value images can be viewed, of course, as a surface in
a three-dimensional space consisting of two spatial dimen-
sions and one feature dimension, the intensity. This obser-
vation has been recently generalized to represent images
with more features, such as color, as the embedding of
surfaces in a spatial-feature higher dimensional spaces
[14,15]. A recent review article [4] gives a comprehensive
discussion of the phenomenon of scale invariance in natu-
ral images, starting from old observations of television
engineers [16,17] to more recent work on natural images
starting in the late 1980s and continuing ever since
[1,3,4,18,19]. We will concentrate our discussion, how-
ever, around the studies of two groups of researchers,
because those studies lead, in our mind, to results that
are most puzzling.

Ruderman and Bialek [1] find = 0.19. As pointed out
by Ruderman [2], the scaling form of the power spectrum
determines the scaling form of the two point difference
function,

D(r) = ((¢(r) — ¢(O)F), ()

to be given by
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D(r) =D, — Dyr 7, ()

where D and D, are constants. Indeed direct measurement
of the difference function obtained from averaging over a
small database of images taken from wood scenery yields
also n = 0.19.

The work described above, as well as the work of other
researchers that found scaling in natural images [20], is
based on the study of databases that are limited to images
of a particular type. More surprising, however, is the find-
ing of Huang and Mumford [3]. They studied these corre-
lations over a large archive of 4000 images, provided by
van Hateren and van der Schaaf [21]. Taking pairs of points
from all images together, they were able to show that the
form given by Eq. (2) above describes the behavior of the
difference function over a range of distances between 4 and
32 pixels with the same exponent, n = 0.19. The archive
they used, however, is very diverse and contains scenes of
forest, buildings, grass, clouds, roads, and rivers all in the
same image and images taken from very different angles.
The fact that the anomalous dimension observed fits that
obtained in Refs. [1,2], in spite of the obvious diversity of
the different images in the archive, is remarkable and
puzzling indeed. Our experience in the field of continuous
phase transitions and of self-organized criticality is that
various exponents characterizing the system are universal.
Namely, those exponents are exactly the same for systems
which are quite different from each other as long as they
share a small number of some physical attributes such as
dimension, symmetry, and range of interaction. The puz-
zlement with the results described above is that they in-
dicate that natural images are universal in some sense. This
is extremely surprising and yet very important if true.

The purpose of the present Letter is mainly to under-
stand whether the robustness of the exponent really indi-
cates universality. This is done in two steps. First, we try to
reproduce the result of Huang and Mumford [3] and then to
study its statistical significance, namely, to ask whether the
database exponent is representative of single images in that
database. This is achieved by showing that each image
separately can indeed be described by a difference function
of the form given above (2) and constructing the distribu-
tion function of the separate 7’s. Our purpose here is not to
explain the origin of the form of the two point difference
function in each image or in the database but to show that
they exist and to study the statistical meaning of our
finding.

We use the archive of van Hateren and van der Schaaf
[21] that was used by Huang and Mumford [3]. For each
image, given as a 1024 X 1536 array of intensities, we
calculate the difference function D(r) in the following
way. We choose at random 5 X 10° pairs of points in the
image that are separated by distances between 0 and 32
pixels and are oriented in different directions. (The reason
for our choosing distances only between 0 and 32 pixels is
our intention to repeat exactly the procedure of Huang and

Mumford [3]. It is clear that consideration of larger dis-
tances may be of importance, but this is postponed to future
publications.) The difference function of each image is
obtained by averaging [¢(r) — ¢(0)]* for each distance
in the range of up to 32 pixels over the pairs corresponding
to that distance. The database difference function is the
average over images of the image difference function. We
obtain the database difference function by averaging over
the first 1500 images chosen from the archive. We then fit
the data by the form given in Eq. (2). The observed results
are depicted against the best fit in Fig. 1. The pluses
represent the observed results, while the continuous line
represents the best fit. The value of 7 corresponding to the
best fit is n = 0.19. This value varies a little due to
averaging over different numbers of images. In our mea-
surements the variation was of the order of An = *0.01
(for instance, for the first 1100 images of the archive the
value n = 0.18 is obtained). The result of Huang and
Mumford is thus reproduced.

Our next question is whether the image difference func-
tions can be fitted by the same form of behavior as the
database difference function but not necessarily with the
same constants. We do expect, however, that the observed
image difference function will be noisier than the database
difference function just because the average is on a number
of pairs (at each distance) that is by the order of 1000
smaller. We have obtained the fit for all our images, but
naturally we can present it only for a small number as
depicted in Figs. 2 and 3.

The obtained fit is good. It is characteristic of the images
with a relatively large exponent to fluctuate a bit around the
fitted line (Fig. 3, right panel). Note that we perform here a
nonlinear fit that is not necessarily convex and may suffer
from local minima. Since the exponents that describe the
individual images are not of a definite sign, care should be
taken when fitting the data. Search procedures starting, say,
from a positive exponent, in a case where the exponent is
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FIG. 1. Averaged difference function. The average is taken
over 1500 images, n = 0.19.
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FIG. 2. Left panel: Image 1401, n = —0.2. Right panel: Image 262, n = —0.05.

actually negative, may end in a small positive exponent and
in a fit which is less than satisfactory. We obviously see that
the value of anomalous dimension differs from image to
image. Note that the results we give for the anomalous
dimensions for different images is based on measurements
in the range of 0—32 pixels in accordance with the mea-
surements of Huang and Mumford on the full database.
Now, if the value of the exponent was the same for all
individual images, the value of the database anomalous
dimension would have been identical to the value of the
images. For the database value to be considered as a
representative of the values on the images, the distribution
of the image anomalous dimension should be narrow.
Figure 4 shows the distribution of values of 7 as obtained
from the first 1500 images in the archive. Two obvious
features of the distribution are that it has a maximum in the
vicinity of 7 = 0 and a rather wide distribution giving
significant weight to relatively high values of 7. The
distribution is fitted by the function

P(n) = exp{[C, + Ca(n — (m)) + C3(n — (M)*]%} (3)

in a log-log scale that emphasizes the distribution ends. A
value of C, = 1 implies a Gaussian distribution. However,
its fitted value is approximately equals to 0.5. This implies
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Left panel: Image 59, n = 0.04. Right panel:

of a slower decay of the distribution for negative values of
7, for which the fit is excellent. The conclusion, therefore,
is that the database 7 is not representative of the image 7’s.
It would be of interest to ask whether there are any specific
features in images with high n which are relatively rare
compared to images with lower 7’s. For the benefit of the
readers, we have presented a number of images of high 7
versus a number of images with low 7 in the web site listed
in Ref. [22]. Our conclusion from direct observation of the
images is that a large value of eta is usually associated with
an image in which the detail seems less pronounced, as
expected, of course, from Eq. (2) which defines eta. Having
said that, it is also evident that the difference to the eye
between images differing considerably in eta is not very
striking, and we have found it quite difficult, in some cases,
to guess just by looking at a pair of such images that their
difference in 7 is that big.

The wide distribution of the n’s implies that a whole
family of models is needed to describe scaling in natural
images. This is not different from the need to introduce the
family of variants of the KPZ equation in response to
experimental work [12,23-25] which disagrees with the
standard KPZ equation. Most of those variants of KPZ are
based on the assumption that the noise, describing the
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Image 712, n = 1.01.
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FIG. 4 (color online). Distribution of 7 for 1500 images in the
archive.  Fit function: P(n) = exp{[C; + Ca(n — (7)) +
Cs(n — (m)*]%}. C, = 0.5. Mean = 0.155; variance = 0.21;
skewness = —0.28; kurtosis = 2.9.

random deposition process, is algebraically correlated in
either space [26—28] or time [26,29-31]. In any case the
scaling exponent depends on the exponent characterizing
the decay of the correlation. Is it possible that the spread in
the 7’s in natural images is the result of the action of
correlated noises with different algebraic decays? The
processes involved in shaping the scene of which an image
is taken are very complex and will not be analyzed here.
We would like to single out, however, one process that has
the required properties, without saying that it is the only
such process or even the most important one but that it is
enough to make us suspect that various algebraically cor-
related random processes are responsible for the wide
distribution of the n’s. Compare the distribution of fallen
leaves under calm conditions with their distribution follow-
ing a turbulent wind. The turbulent wind velocity is ran-
dom and algebraically correlated. Consequently, we find
under calm conditions a random but more or less even
coverage of the ground by the leaves, while after a turbu-
lent wind we see clusters on various scales. This may have
a definite effect on 7. To understand which of the possible
different factors might dominate the value of 7, we suggest
obtaining images of the same location as a function of time
and correlating possible changes in the scaling exponents
with measurable changing properties of the local
environment.

Scaling in natural images remains an open question that
needs further experimental and statistical study combined
with the construction of physical models that can explain
the emergence of such correlations.
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