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1Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
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The four-loop QCD corrections to the electroweak � parameter arising from top and bottom quark
loops are computed. Specifically we evaluate the missing ‘‘nonsinglet’’ piece. Using algebraic methods
the amplitude is reduced to a set of around 50 new master integrals which are calculated with various
analytical and numerical methods. The inclusion of the newly completed term halves the final value of the
four-loop correction for the minimally renormalized top-quark mass. The predictions for the shift of the
weak mixing angle and the W-boson mass are thus stabilized.
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Electroweak precision measurements and calculations
provide stringent and decisive tests of the quantum fluctu-
ations predicted from quantum field theory. As a most
notable example, the indirect determination of the top-
quark mass, mt, mainly through its contribution to the �
parameter [1], coincides remarkably well with the mass
measurement performed by the CDF and D0 experiments
at the Fermilab Tevatron [2]. Along the same line, the
bounds on the mass of the Higgs boson depend critically
on the knowledge of mt and the control of the top-mass
dependent effects on precision observables.

A large group of dominant radiative corrections can be
absorbed in the shift of the � parameter from its lowest
order value �Born � 1. The result for the one-loop approxi-
mation

 �� � 3xt � 3
GFm2

t

8
���
2
p
�2
; (1)

hence quadratic inmt, was first evaluated in [3] and used to
establish a limit on the mass splitting within one fermion
doublet. In order to make full use of the present experi-
mental precision, this one-loop calculation has been im-
proved by two-loop [4–6] and even three-loop QCD
corrections [7,8]. Also important are two-loop [9–13]
and three-loop [14,15] electroweak effects proportional
to x2

t and x3
t , respectively, and the three-loop mixed cor-

rections of order �sx2
t [15].

An important ingredient for the interpretation of these
results in terms of top-mass measurements performed at
hadron colliders or at a future linear collider is the relation
between the pole mass and the MS-mass definitions, the
former being useful for the determination of mt at col-
liders, the latter being employed in actual calculations and
in short-distance considerations. To match the present
three-loop precision of the � parameter, this relation
must be known in two-loop approximation [16–19], and
for the four-loop calculation under discussion the corre-
sponding three-loop result [20–22] must be employed.

For fixed pole mass of the top quark, the three-loop
result leads to a shift of about 10 MeV in the mass of the

W boson as discussed in [15,23]. (This applies both to the
pure QCD corrections and the mixed QCD-electroweak
one.) Conversely, the corresponding shift of the top-quark
pole mass amounts to 1.5 GeV. (Similar considerations
apply to the effective weak mixing angle and other preci-
sion observables.) These values are comparable to the
experimental precision anticipated for top- and W-mass
measurements at the International Linear Collider [24]. In
addition, there exists a disagreement (on the level of 3�)
between the values of the so-called on-shell week mixing
angle, sin2�W , as measured by NuTeV Collaboration in
deep-ienalstic neutrino scattering [25] and as obtained
from the global fit [26] of the standard model to the
electroweak precision data [27].

From all these considerations an improvement of the
theoretical accuracy seems, therefore, desirable. This,
however, requires the evaluation of four-loop QCD correc-
tions to the � parameter, the topic of the present work.

The shift in the � parameter is given by

 �� �
�Z
T�0�

M2
Z

�
�W
T �0�

M2
W

; (2)

where �W=Z
T �0� are the transversal parts of the W- and

Z-boson self-energies at zero momentum transfer, respec-
tively. The calculation is thus reduced to the evaluation of
vacuum (tadpole) diagrams.

The W self-energy receives contributions from the cor-
relator of the ‘‘nondiagonal’’ t-b current only. Contri-
butions to the Z self-energy originate only from the ‘‘di-
agonal’’ axial current correlator induced by top-quark
loops. The vector current part vanishes due to current
conservation; the bottom quark is taken as massless. The
nonvanishing parts of �Z

T�0� are conveniently decomposed
into nonsinglet and singlet pieces characterized by
Feynman diagrams where the external current couples to
the same and to two different closed fermion lines, respec-
tively. In three-loop approximation the singlet-piece is
larger than the nonsinglet piece by nearly a factor 20.
This has motivated the authors of [33] to evaluate, in a
first step, the four-loop singlet piece. The strategy em-
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ployed in that paper was based on the algebraic reduction
of the amplitudes to a small set of master-integrals with the
help of the Laporta algorithm [34,35], an approach which
was recently also applied to the evaluation of the two
lowest nonvanishing Taylor coefficients of the vacuum
polarization [36,37] and to the decoupling of heavy quarks
in QCD [38–40], both in four-loop approximation.

In order to complete the evaluation of the four-loop
QCD corrections to the � parameter, �W

T �0� and the non-
singlet parts of �Z

T�0� are required. The evaluation of
�Z
T�0� is fairly straightforward: the input diagrams have

been generated with QGRAF [41]; for the algebraic reduc-
tion to master integrals an efficient program has been
constructed [42] which relies on FORM3 and FERMAT [43–
45]. Furthermore, the full set of the corresponding master
integrals is available with high precision [46,47].

The evaluation of �W
T �0�, however, requires the knowl-

edge of a sizeable number of new master integrals, a major
part of them (around 40) nontrivial to evaluate precisely.
The master integrals can be chosen in many different ways.
As discussed in [47] the choice of a so-called ‘‘�-finite
basis’’ leads to integrals particularly suited for the evalu-
ation through Padé approximations. On the other hand,
topologies with eight lines or less are conveniently calcu-
lated through difference equations. In the present Letter we
therefore employ a combined approach, which makes use
of difference equations [35,48] to evaluate the simpler
topologies, i.e., those with up to eight lines, and a semi-
numerical method based on Padé approximations [47,49–
52]. There, a suitably chosen line of the four-loop vacuum
diagram is cut, the large- and the small-q2 behavior of the
resulting three-loop propagator are calculated analytically
[53–56], the function in the whole region is represented by
Padé approximations, and the remaining q2 integration is
performed numerically (see Fig. 1).

An estimate of the numerical uncertainty is obtained by
comparing different Padé approximations based on the

same input information from the large and small q2 region,
or by increasing the input information through inclusion of
more terms from the high and the low q2 region. Further-
more, in all cases at least two different lines were cut to
check the consistency of the results. A detailed discussion
of the various applications, characteristic examples, and
comparisons with analytic results, e.g., for the lowest mo-
ment of the polarization function, can be found in [52].

In contrast to the applications discussed in earlier pub-
lications [47,51,52], massless cuts unavoidably arise in
some of the relevant diagrams and a generalization of the
method is required: in addition to the introduction of a
suitably chosen function needed for the subtraction of the
high energy logarithms, another function is employed for
the subtraction of the logarithms arising from the massless
cut in the low energy limit.

The result for the shift in the � parameter can be cast into
the following form:

 ��MS � 3xt
X3

i�0

�
�s
�

�
i
��MS

i : (3)

Here xt is expressed in terms of the MS quark massmt �

mt��� at scale � � mt, and �s, defined in the MS scheme
for six flavors, is chosen at the same scale. The normaliza-
tion factors are such that ��MS

0 � 1.
For the four-loop nonsinglet result, decomposed accord-

ing to the various color structures and the nf dependence,
we find:

 

��MS
3 �nonsinglet� � 1:5211C3

F � 1:2363C2
FCA � 2:3132C2

FTnl � 4:5962C2
FTnh � 0:7438CFC

2
A � 1:3705CFCATnl

� 2:5037CFCATnh � 0:4681CFT2n2
l � 0:6880CFT2n2

h � 0:8495CFT2nhnl; (4)

with CF � �N
2
c � 1�=�2Nc�, CA � Nc, and T � 1=2,

where Nc � 3 is the number of colors. nf denotes the
number of active (light plus heavy) quark fields, with nf �
nl � nh. This result has been also independently obtained
with the help of direct application of the Padé approxima-
tion method like it was described in [51,52] for the lowest
Taylor coefficients of the vacuum polarization. We find
agreement for all color structures with the relative accuracy
varying between 0.4% and 4%, and confirm the result for
the singlet contribution.

Setting nh � 1, nl � 5, and the color coefficients to
their natural values, we find

 ��MS
3 � ��MS

3 �singlet� � ��MS
3 �nonsinglet�

� �3:2866� 1:6067 � �1:6799; (5)

where we have also displayed the result of [33] for the
singlet piece. The singlet piece is still larger than the non-
singlet piece by a factor two. Nevertheless, the hierarchy is
less pronounced than in the three-loop case. Numerically,
the overall correction looks small, just as in the two- and
three-loop case. However, if the result is expressed in terms
of the pole mass, a major shift originates from the large
correction in the pole-MS relation:

4 loop = 3lq ∝ dq 3l
q

= dq F (q2)

FIG. 1. Symbolic description of the Padé method: one line of
the vacuum integral is cut; the resulting propagator is repre-
sented by a Padé approximation and integrated numerically.
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 ��pole
3 � �93:1501: (6)

For fixed top mass, this corresponds to a shift of around
2 MeV in the W-boson mass, well below the precision
anticipated for future experiments.

In conclusion, the full O�Xt�
3
s� contribution to the �

parameter proves to be small and the result based on the
three-loop calculation is stabilized.
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Note added.—The results of our calculations have been
recently confirmed in the independent work [57].
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