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(Received 24 March 2006; published 5 September 2006)

We use Hamiltonian dynamics to discuss the statistical mechanics of long-lasting quasistationary states
particularly relevant for long-range interacting systems. Despite the presence of an anomalous single-
particle velocity distribution, we find that the central limit theorem implies the Boltzmann expression in
Gibbs’ � space. We identify the nonequilibrium submanifold of � space characterizing the anomalous
behavior and show that by restricting the Boltzmann-Gibbs approach to this submanifold we obtain the
statistical mechanics of the quasistationary states.
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In comparison with its equilibrium counterpart, non-
equilibrium statistical mechanics does not rely on universal
notions, like the ensembles ones, through which one can
handle large classes of physical systems [1]. Incomplete
(or partial) equilibrium states [2,3] are in this respect a
remarkable exception, since in these cases concepts of
equilibrium statistical mechanics can be used to describe
nonequilibrium situations. Incomplete equilibrium states
arise when different parts of the system themselves reach a
state of equilibrium long before they equilibrate with each
other [2]. The classical understanding of how a system
approaches equilibrium is based on the short time-scale
collisions mechanism which links any initial condition to
the statistical equilibrium. For long-range interacting sys-
tems, this picture is not valid anymore since the time scale
for microscopic collisions diverges with the range of the
interactions. This implies that the Boltzmann equation
must be substituted with other approximations such as
the Vlasov or the Balescu-Lenard equations [4], where
the interparticle correlations are negligible or almost neg-
ligible and a nonequilibrium initial configuration could
stay frozen or almost frozen for a very long time. This
applies, e.g., to gravitational systems, Bose-Einstein con-
densates, and plasma physics [5]. Because of the physical
relevance of long-range interacting systems and to the
privileged position of incomplete equilibrium states in
nonequilibrium statistical mechanics, it is important to
investigate whether the notion of incomplete equilibrium
plays an important role in understanding the nonequilib-
rium properties of these systems.

Recently we showed [6] that nonequilibrium states in
which the value of macroscopic quantities remains sta-
tionary or quasistationary for a reasonably long time
[quasistationary states (QSSs)] are important, e.g., for ex-
periments, since they appear even when the long-range
system exchanges energy with a thermal bath (TB).
Using the same paradigmatic long-range interacting sys-
tem of Ref. [6], the Hamiltonian mean field (HMF) model
[7], here we discuss the Gibbs’ � space statistical mechan-
ics description of the QSSs in a canonical ensemble per-
spective. We identify the nonequilibrium submanifold of

the � space within which the quasistationary dynamics is
confined, and we show that the Boltzmann-Gibbs (BG)
approach, restricted to this submanifold, gives the correct
statistics of the QSSs. In this respect, the QSSs can be
interpreted as incomplete equilibrium states [2]. Our theo-
retical framework allows one to calculate, on the basis of
the empirical detection of the temperature and of the value
of an order parameter, any other thermodynamic quantity
such as the energy or the specific heat of the system. The
possibility of predicting physical quantities which charac-
terize the QSSs could be useful, i.e., for understanding
nonequilibrium features of gravitational or plasma struc-
tures, and it is then of particular interest for experimental-
ists or theorists of long-range interacting systems. Since
the system considered is naturally endowed with micro-
scopic Hamiltonian dynamics, we validate step by step our
theoretical derivation with a priori results obtained from
dynamical simulations. Our findings also furnish novel
significant arguments to an intense debate in the literature
[8–11], which so far has been restricted to the single-
particle � space and to the microcanonical ensemble.

The HMF model can be introduced as a set ofM globally
coupled XY spins with Hamiltonian [7]

 HHMF �
XM
i�1

l2i
2
�

1

2M

XM
i;j�1

�1� cos��i � �j��; (1)

where �i 2 �0; 2�� are the spin angles and li 2 R their
angular momenta (velocities). The specific magnetization
of the system is mHMF � j

PM
i�1�cos�i; sin�i�j=M and the

temperature T is identified with twice the specific kinetic
energy. We have thus eHMF � THMF=2� �1�m2

HMF�=2,
where eHMF � EHMF=M is the specific energy. Direct con-
nections with the problem of disk galaxies [12] and free
electron lasers experiments [13] have been established for
this Hamiltonian. Equation (1) has also been shown to be
representative of the class of Hamiltonians on a one-
dimensional lattice in which the potential is proportional
to

PM
i;j�1�1� cos��i � �j��=r�ij, where rij is the lattice

separation between spins and �< 1 [14]. Hence, the
Hamiltonian in Eq. (1) can be considered as an interesting
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‘‘paradigm’’ for long-range interacting systems [12]. The
TB introduced in [6] is characterized by N 	 M equiva-
lent spins first neighbors coupled along a chain

 HTB �
XN

i�M�1

l2i
2
�

XN
i�M�1

�1� cos��i�1 � �i��; (2)

with �N�1 � �M�1, and the interaction between HMF and
TB is given by

 HI � �
XM
i�1

XS
s�1

�1� cos��i � �rs�i���; (3)

where � is a coupling constant that modulates the interac-
tion strength between HMF and TB. Each HMF spin is thus
in contact with S TB spins specified as initial condition
(rs�i� are independent integer random numbers in the
interval [M� 1, N]). A ‘‘surfacelike effect’’ S
M��1

(0< �< 1) guarantees a consistent thermodynamic limit
[6]. For � � 0 HMF and TB are decoupled and the setup
reproduces the microcanonical dynamics. For � � 0 the
whole system is at constant energy, whereas the energy of
the HMF model fluctuates. Our numerics are obtained with
M � 103, N � M2, S � 105M�1=2, 0:005 � � � 0:1 (we
use dimensionless units), through a velocity-Verlet algo-
rithm assuring a total energy conservation within an error
�E=E< 10�5 [6]. The width T0 of the Maxwellian proba-
bility density function (PDF) for the initial TB velocities is
a control parameter for the bath temperature. For � > 0 we
showed [6] that the HMF temperature finally converges to
the BG equilibrium at temperature T0.

By setting far-from-equilibrium initial conditions for the
HMF model, the relaxation to equilibrium typically dis-
plays stationary or quasistationary stages during which the
phase functions mHMF, THMF (and thus also eHMF) fluctuate
around constant or almost constant average values [6]. This
behavior is particularly interesting when the lifetime of the
QSS diverges in the thermodynamic limit [6,8–11]. This
happens if, for example, at t � 0 we set a delta distribution
for the angles [pHMF��� � ��0� ) m2

HMF � 1], a uniform
distribution for the velocities, pHMF�l� � 1=2�l; l 2 ���l; �l�,
with �l ’ 2:03 (eHMF ’ 0:69) [6], and a TB temperature
T0 � 0:38. In Fig. 1(a) we show that during the QSS, for
� > 0, the single-particle velocity PDF is non-Maxwellian
and similar to the distribution found in the microcanonical
case [8–10] (� � 0).

Given some probability distribution for the initial data, a
dynamical estimation of phase functions, like, e.g., the
energy EHMF, can be obtained by recording the phase
function values at different times in a single orbit and
averaging over different realizations of the initial condi-
tions. To understand the connection between the anoma-
lous PDF in � space and the � space statistics, we start by
measuring the PDF of the sum of the velocities of L
particles, pLHMF [Fig. 1(b)]. Such a distribution tends very
quickly to the Gaussian form as L increases. In fact, a
rescaling of l byL1=2 and a multiplication of pLHMF�l� by the

same factor reveal the central limit theorem (CLT) data
collapse onto the Maxwellian (Gaussian) distribution of
temperature T � THMF � 0:397. The fact that the CLT
applies to the sum of the velocities is a strong indication
[15] that in � space the probability for the energy EHMF is
characterized by the Boltzmann expression !�EHMF��

e�EHMF=T (kB � 1), where !�EHMF� is a density of states.
Although this situation resembles equilibrium, there are
some important differences. For example, the anomalous
velocity PDF in � space implies that the joint probability
of all particles is not given by a mere product of exponen-
tials. The Boltzmann expression arises because of weak
enough particle-particle correlations [4], for a sufficiently
large number of particles. Below, we directly verify its
occurrence.

Another key observation is that during the QSS the
HMF does not thermalize with the TB. In Fig. 1(c) we
shifted the TB temperature by 10%, setting it to T0 � 0:42.
While this modifies the final HMF equilibrium tempera-
ture, it does not affect THMF during the QSS. Even the
subset of S TB spins in direct contact with the HMF model,
f�rs�i�g1�s�S;1�i�M, is at TSTB � T0 and does not thermalize
with the HMF temperature. The energy fluctuations are

-3 -2 -1 0 1 2 3
l

10
-5

10
-4

10
-3

10
-2

10
-1

p
HMF

(l)

ε*=0
ε*=0.005
ε*=0.1

(a)

-3 -2 -1 0 1 2 3
l/L0.5

10
-5

10
-4

10
-3

10
-2

10
-1

L
0.5

p
HMF

L
     (l/L

0.5
)

L=1
L=5
L=10
L=50

(b)

250 500 750
t

0.3

0.35

0.4

0.45

T(t) ≡ 2k(t)

t*

T
HMF

T
TB

T
TB

 S

(c)

FIG. 1. QSS for M � 103 and T0 � 0:38. For � � 0:005 we
observe the average values m2

HMF ’ 0:015 and THMF ’ 0:397
(eHMF ’ 0:691). (a) Single-particle velocity PDF. The solid
line is pTB�l�. (b) PDF of the sum of the velocities of L particles.
By multiplying the PDFs for different L’s by L0:5 and dividing
the velocities l by L0:5, all data collapse fairly well onto the line
that corresponds to a Gaussian distribution with width T �
0:397. (c) Temperature time evolutions for three different subsets
of the system during the QSSs. Here the TB temperature has
been shifted to T0 � 0:42.
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nevertheless significantly larger than those due to the al-
gorithm precision (�EHMF=EHMF ’ 10�2 for M � 103),
distinguishing the canonical QSSs from the microcanoni-
cal ones.

We now address the main result of the Letter, which is
central to the discussion of the appropriate statistical me-
chanics approach for quasistationary nonequilibrium states
in long-range systems and to the debate in [8–11].
According to BG, the equilibrium PDF of the energy E
for a system in contact with a TB at temperature T is
pBG�E� � !�E�e�E=T=Z, where Z is the partition function.
Since the Hamiltonian simulations consent an empirical
estimation of this PDF, it is possible to verify pBG�E� on
dynamical basis [16]. From the analytically known solu-
tion of the HMF model [7,12] one obtains the BG equilib-
rium caloric curve of the system T�E� [solid line in
Fig. 2(a)]. The integration of the thermodynamic relation
@ ln!�E�=@E � 1=T�E�,

 ln�!�E�� � ln�!�E0�� �
Z E

E0

dE0
1

T�E0�
; (4)

furnishes an analytical evaluation of !�E� [solid line in
Fig. 2(b)] and hence of pBG�E� [16]. In Fig. 3(a) we show
that, as expected, pBG�EHMF� and the result of the simula-
tions at equilibrium, p�EHMF�, do coincide. A linear re-
gression of ln�p�EHMF�=!�EHMF�� vs EHMF with a
coefficient R � �0:999 97 gives direct evidence of the

Boltzmann factor [Fig. 3(b)]. Moreover, the inverse of
the slope coefficient agrees with the dynamical T �
2kHMF within an error �T=T � 0:3%.

With respect to the QSS, it is interesting to ask [8–11] if
there exist a statistical mechanics approach that, equiva-
lently to the BG equilibrium one, can reproduce the dy-
namically observed p�EHMF�. We first notice that the
anomalous dynamical behavior during the QSS is due to
the fact that the system, instead of exploring the over-
whelming majority of � space microstates, is trapped
[17] in regions characterized by almost constant nonequi-
librium values of the order parameter m. Let hmi be the
average value around which m fluctuates and !hmi�E� the
submanifold of � space which corresponds to this dynami-
cal behavior. The assumption of weak correlations among
particles, consistent with the previous argument based on
the CLT and with the Vlasov and Balescu-Lenard ki-
netic pictures [4], suggests that the Lebesgue measure of
!hmi�E� is nonzero. We then expect p�E� � pBG;hmi�E� �
!hmi�E�e

�E=T=Z [15]. Having assumed this, a saddle point
calculation at fixed m � hmi (large deviation formulation
of the canonical ensemble [18] at m � hmi) implies that T
in the previous expression satisfies the fundamental ther-
modynamic relation @ ln!hmi�E�=@EjE�hEi � 1=T, where
hEi is the average value of the energy during the QSS.
Hence, !hmi�E� can be calculated by replacing the equilib-
rium caloric curve T�E� with the caloric curve at constant
m � hmi, Thmi�E�, and by performing the approach of
Eq. (4). The validity of this strategy, and, in particular, of
Eq. (4) for the QSS, is further established by the compari-
son with the dynamical simulations results. Specifically,
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FIG. 2. (a) Caloric curve of the HMF model for M � 103. The
solid line is the BG equilibrium, and the dashed line is the curve
at fixed m2 � 0:015. (b) Theoretical calculation of ln�!�EHMF��
by using Eq. (4) with the equilibrium caloric curve (solid line)
and with the curve at m2 � 0:015 (dashed line).
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FIG. 3. For N � 106, M � 103, and � � 0:005 comparison
between the dynamically recorded p�EHMF� (open circles) and
pBG�EHMF� (dashed lines).
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we show below that T corresponds to twice the specific
kinetic energy of the HMF.

The HMF caloric curve at fixed mHMF � hmHMFi is
given, for all hmHMFi 2 �0; 1�, by the straight line

 THMF;hmi�EHMF� � 2
EHMF

M
� �1� hmHMFi

2� (5)

[e.g., dashed line in Fig. 2(a) for the QSS described in
Fig. 1]. The integration of the inverse of THMF;hmi gives
!hmi�EHMF� [dashed line in Fig. 2(b)]. The leading behav-
ior of ln�!hmi�EHMF�� is proportional to M. This implies
that only an exponential probability for the microstates can
balance this M dependency, to yield an intensive tempera-
ture through the relation @ ln!hmi�EHMF�=@EHMF. In
Fig. 3(c) it is shown that p�EHMF� observed during the
QSS at constant hm2i ’ 0:015 and h2kHMFi ’ 0:397 agrees
with pBG;hmi�EHMF�. Again, a linear regression of
ln�p�EHMF�=!hmi�EHMF�� vs EHMF with a coefficient R �
�0:999 97 confirms the Boltzmann factor for the energy
PDF during the QSS [Fig. 3(d)]. The inverse of the slope
coefficient T concurs with h2kHMFi within an error
�T=T � 0:5%. We checked that a replacement of the limit
�! 0 in the exponential Boltzmann factor lim�!0�1�
��EHMF�

1=� with a finite j�j 
 10�3 is already in com-
plete disagreement with the observed dynamical fluctua-
tions for M � 103. We applied the same procedure for
different values of M and to other stationary and QSSs
stemming from different initial conditions [19] obtaining
similar agreements between our theoretical scheme and the
dynamical simulations.

We have studied the statistical mechanics of QSSs
emerging in the Hamiltonian dynamics of the HMF model
in contact with a reservoir. We have shown that weak
interparticle correlations and the CLT implies [15] that
the statistical mechanics in � space is obtained by restrict-
ing the BG approach to a submanifold defined by a non-
equilibrium value of the magnetization m � hmi [2].
During the QSS, the HMF does not thermalize with the
TB. The temperature to be used in the Boltzmann factor is
fixed by the fundamental thermodynamic relation applied
in this nonequilibrium situation and corresponds to twice
the specific kinetic energy of the system. Our theoretical
approach, based on the idea of incomplete equilibrium [2],
given the quasistationary values of the order parameter and
the temperature, allows one to calculate the other thermo-
dynamic quantities such as the energy of the system and its
fluctuations (i.e., the specific heat). We expect the present
approach to be significant for nonequilibrium systems dis-
playing stationarity or quasistationarity [3,5,8,13,19,20]
concomitantly with a kinetic theory based on the Vlasov
or Balescu-Lenard equations [4].
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