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Double quantum dots offer unique possibilities for the study of many-body correlations. A system
containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson
model with a structured (nonconstant) density of states. Numerical renormalization-group calculations
show that, while band filtering through the resonant dot splits the Kondo resonance, the singlet ground
state is robust. The system can also be continuously tuned to create a pseudogapped density of states and
access a quantum-critical point separating Kondo and non-Kondo phases.
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The Kondo effect, arising from antiferromagnetic corre-
lations between an unpaired spin and an electron bath [1],
can be strongly modified by structure in the host density of
states (DOS). Geometric confinement [2] and narrow
bands [3] can dramatically change the Kondo state, with
important observable consequences [4]. In pseudogapped
hosts, where the DOS vanishes as a power law at the Fermi
energy, a quantum-critical point (QCP) separates the
Kondo phase from one at smaller couplings in which the
Kondo effect is completely suppressed [5–7].

Semiconductor quantum dots provide many opportuni-
ties for systematic investigation of strong-correlation ef-
fects [8]. Single quantum dots have allowed controlled
realizations of the Kondo regime of the Anderson impurity
problem [9]. Recent attention has focused on the fascinat-
ing physics promised by double quantum-dot (DQD) sys-
tems [10]. For example, DQD experiments have
investigated the effect of interdot ‘‘hybridization’’ on
Kondo physics [11] and have beautifully demonstrated
the competition between the Kondo effect and the
Ruderman-Kittel-Kasuya-Yosida interaction among local-
ized spins [12]. DQD setups have also been proposed to
realize the unusual non-Fermi-liquid properties associated
with the two-channel Kondo effect [13].

In this Letter, we propose DQDs as a versatile experi-
mental realization of an impurity coupled to an electron
bath having a structured (nonconstant) DOS. Devices with
one dot (‘‘dot 1’’) in the Kondo regime and the other
(‘‘dot 2’’) close to resonance with the leads can be designed
to produce an effective DOS having sharp resonances and/
or pseudogaps near the Fermi energy. These features are
shown to strongly modify the Kondo state, resulting in a
wide range of DQD behavior, which we explore using
numerical renormalization-group methods.

We show that, when dot 1 is coupled to the leads only
through dot 2, the Kondo resonance on dot 1 develops a
sizable splitting. Unlike magnetic fields, which produce
similar splittings, the ‘‘band filtering’’ introduced by the
connecting dot preserves the Kondo singlet ground state

and results in a finite Kondo temperature for complete
screening of the magnetic moment on dot 1.

A second configuration, involving coherent dot-dot cou-
pling via the leads, can mimic an Anderson impurity in a
pseudogapped host. The device can be tuned by varying
gate voltages to a QCP separating Kondo-screened and
free-local-moment ground states. Such DQDs offer an
attractive experimental setting for systematic study of
boundary quantum phase transitions.

The DQD consists of dots 1 and 2 connected to left (L)
and right (R) leads as well as to each other, as shown
schematically in Fig. 1. We focus on situations in which
dot 1 is tuned to have an odd number of electrons in a
Coulomb blockade valley, so that it has an unpaired spin,
while near-resonant transport through dot 2 is dominated
by a single level [14] having a dot-lead coupling greater
than the charging energy, so that the dot can be considered
noninteracting. Our Hamiltonian is therefore
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FIG. 1 (color online). Schematic of the DQD system. Dot 1 is
Kondo-like (� "1, "1 �U1 � �1 � ��0V

2
1 , where �0 is the

lead DOS), while dot 2 can be treated as a single, noninteracting
(U2 � �2 � ��0V2

2 ) resonant level.
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where ayi� creates a spin-� electron in dot i (�1; 2), ni� �
ayi�ai�, and cyjk� creates a spin-� electron of wave vector k
and energy "k in lead j ( � L;R). For simplicity, we take
the dot-lead couplings Vij to be k-independent. We further
assume ViR � ViL, in which case the dots couple to the
leads only in the symmetric combination ck� � �cLk� �

cRk��=
���
2
p

and Eq. (1) describes double dots effectively
coupled to a single lead, with Vi �

���
2
p
ViL. Near-

symmetric couplings can be achieved experimentally by
appropriate tuning of the dot-lead tunneling gate voltages
(see, e.g., [11]). Vi and the dot-dot coupling � are taken to
be real and positive.

The Green’s function (GF) for dot 1 is G11�!� �
hha1�:ay1�ii � �1�U1�11�!��G

�0�
11 �!�, where ! is the en-

ergy relative to the common chemical potential � � 0 in
the leads, �11�!� � hhn1;��a1�:ay1�ii, and G�0�11 �!� is the
noninteracting GF for dot 1 in the presence of dot 2:
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�1 being the non-
interacting GF for dot i in the absence of the other dot.

Hereafter, we assume a constant DOS �0 in the leads.
In the wide-band limit (half bandwidth D� j!j), we
can formally write 	G11�!�
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with �i � ��0V2
i and �2�!� � �2=f�	�!� "2�
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2
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All information on the coupling of dot 1 to the leads and
to dot 2 enters G11 through ��!� (which essentially re-
normalizes the single-particle energy "1) and, more im-
portantly, through ��!�. This provides a mapping of
the DQD onto a single Anderson impurity coupled to a
Fermi system with an effective hybridization function
��!�, which ‘‘filters’’ the band states seen by dot 1 and
modifies its coupling to the leads. We have solved this
interacting model using an extension of the numerical
renormalization-group (NRG) method [15] designed to
handle arbitrary conduction band shapes [6].

In order to understand the effects of the nonconstant
effective hybridization ��!�, we consider (i) a side-dot
configuration, in which dot 1 is coupled to the leads only
through dot 2 (� � 0, V1 � 0); (ii) a parallel configura-
tion, in which interdot interactions take place only indi-
rectly via the leads (� � 0, V1 � 0); and (iii) a more
general fully connected configuration (� � 0, V1 � 0).

(i) In the side-dot configuration, the effective hybridiza-
tion ��!� � ��2�!��

2, so the system maps onto an
Anderson impurity coupled to a Lorentzian DOS. The
case "2 � 0, which places the peak in ��!� at the Fermi
energy ! � 0, yields the most striking properties.

Figure 2 presents results for "2 � 0 and U1 � �2"1, for
which parameters the model exhibits strict particle-hole
(p-h) symmetry. Figures 2(a)–2(c) show the spectral den-
sity A11�!� � �ImG11�!�=� for �2 � 0:02D and differ-
ent interdot couplings �. For small � [Fig. 2(a)], the
spectral density resembles that for a constant DOS, its
main features being broad Hubbard bands centered near
! � "1 and "1 �U1 and a sharp resonance at ! � 0
having a width of order the Kondo temperature TK (defined
below). In this regime, the nonconstant ��!� manifests
itself through a generalized Fermi-liquid relation [16]
A11�0� � cos2’=	���0�
, where ’ �

R
0
�1	�d�=d!� �

ReG11�!� � �d�=d!�ImG11�!�
d!; i.e., A11�0� is
smaller by a factor of cos2’ than the standard result [1]
for a flat band with the same ��0�.

For larger �, such that TK * �2=
���
2
p

, the spectral density
is qualitatively different. The Kondo resonance initially
rises under the influence of the relatively weak hybridiza-
tion found for j!j * TK. However, the upturn in ��!� at
j!j & �2 causes A11�!� to drop to satisfy A11�0� 

1=	���0�
 (see above), splitting the resonance into two
distinct peaks [Fig. 2(b)]. As � increases further, the dip
deepens and the Kondo peaks move out, eventually sub-
suming the Hubbard bands [Fig. 2(c)].

The splitting of the Kondo peak and the suppression of
A11�0� might be supposed to signal the destruction of the
Kondo singlet ground state (as is the case in a magnetic
field). However, this interpretation is refuted by the NRG
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FIG. 2 (color online). Side-dot configuration. (a)–(c) Dot-1
spectral density for U1 � �2"1 � 0:5, "2 � 0, and �2 � 0:02.
Splitting appears in A11�!� for larger � such that TK * �2=

���
2
p

.
(d) Effective moment �2

1 vs T. (e) TK vs �. For large �, TK / �
(dashed curve). (Energies and TK in units of D.)
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many-body spectra, which show that the Kondo ground
state is reached even for TK � �2.

The progressive screening of the localized spin with
decreasing temperature T can be seen Fig. 2(d), which
plots the square of the effective free moment on dot 1,
�2

1�T� � T�imp, where �imp is the dot contribution to the
zero-field susceptibility. The behavior for TK & �2 follows
that for a constant DOS [15], crossing at T � j"1j from the
free-orbital regime (�2

1 � 1=8) to the local-moment (LM)
regime (�2

1 � 1=4), and then, for T � TK, to the strong-
coupling (SC) Kondo limit in which the magnetic moment
is totally screened (�1 � 0).

For TK * �2, the system still reaches the Kondo fixed
point with �2

1 � 0 as T ! 0. However, the dot spin now
exhibits an interesting window of diamagnetic behavior
(�imp < 0), which becomes more pronounced as TK in-
creases [Fig. 2(d)]. This diamagnetic region arises from a
negative term / d�2�!�=d! in �imp [16].

Since �2
1 in all cases passes from 1=8 at high tempera-

tures to 0 at T � 0, we define the Kondo temperature using
the standard criterion �2

1�TK� � 0:0701 [15]. TK, shown in
Fig. 2(e) for three different �2 values, increases rapidly for
small � and satisfies TK / � in the noninteracting narrow-
band limit �� �2, U1=2.

The splitting observed in the Kondo resonance and the
diamagnetic region in �2

1�T� are produced by the sharp
peak in �2�!� at ! � 0 resulting from the resonance in
dot 2. The resonance acts as a filter for the higher-energy
states in the leads, reducing the effective conduction band-

width connected to dot 1. This interpretation, which is
consistent with similar findings of a negative �imp in
narrow-band systems [3], clearly differentiates the side-
dot behavior from the peak splittings due to coherent
coupling to a second Anderson impurity and the resulting
suppression of the singlet state [11].

The side-dot behavior can also be understood as arising
from interference between resonances. This can be seen by
considering the noninteracting spectral density A�0�11 �

�ImG�0�11 =� for "1 � "2. For � <�2=
���
2
p

, A�0�11 has a single
peak (width ��2) at ! � "2; whereas for � > �2=

���
2
p

,

there are two peaks at ! � "2 �
�����������������������
�2 ��2

2=2
q

, arising
from interference between the ! � 0 single-particle reso-
nances on the two dots. The NRG results for the interacting
case are closely analogous: For TK & �2=

���
2
p

, A11 has a
single peak (width �TK) at ! � "2 � 0, while for TK *

�2=
���
2
p

, there are two peaks, in this case resulting from
interference between the ! � 0 many-body Kondo reso-
nance and the ! � 0 single-particle resonance in �2. The
separation of the peaks in A11 increases with TK � �2,
further supporting the analogy.

(ii) The parallel configuration (� � 0) exhibits very
different behavior. For "2 � 0, the hybridization ��!�
[Eq. (3)] vanishes at ! � 0 as j!jr with r � 2 [see
Fig. 3(a)], and the DQD setup maps onto an Anderson
impurity in a pseudogapped host [17]. The properties of
such a system depend strongly on the exponent r and on the
presence or absence of p-h symmetry [6,7]. For r � 2, the
SC phase is inaccessible at p-h symmetry, but away from
this special limit, a QCP separates SC and LM phases.

In the p-h-symmetric case "1 � �U1=2, the Kondo
resonance in A11 disappears completely [Fig. 3(b)], but
Hubbard bands are still present (arrows in inset). A11

vanishes at ! � 0 as !2, and �2
1�0� � 1=4 [Fig. 3(e)], as

expected in the LM phase [6] where no Kondo effect
occurs. When p-h symmetry is broken by increasing "1,
the same qualitative behavior persists [squares in Fig. 3(e)]
until the QCP is reached at "1 � "�, where A11 is nearly
featureless [Fig. 3(c)] and �2

1�0� � 1=6 [circles in
Fig. 3(e)]. For "1 > "�, the system enters the SC phase in
which �2

1�0� � 0 [triangles in Fig. 3(e)], indicating com-
plete Kondo screening of dot 1, and A11 again goes to zero
as !2 at ! � 0, but (in contrast to the LM phase) there is a
distinct peak at positive ! [Fig. 3(d)].

(iii) In the fully connected configuration (V1, V2, and �
all nonzero), ��!� has an asymmetric Fano-like shape,

peaking at "2 �
������������
�1�3

2

q
=�, and vanishing as �!�!0�

2

at !0 � "2 � �
���������������
�2=�1

p
. Here the DQD properties can be

controlled not only by tuning �, �1, or �2 [as in (i) and (ii)]
but also by using external gate voltages to vary "2.

Figures 4(a)–4(e) show the evolution of ��!� as "2

shifts across the Fermi energy. Generically, the dot-1 spec-
tral density features a p-h-asymmetric Kondo resonance,
whose width TK is primarily determined by ��0�
[Figs. 4(f), 4(h), and 4(j)]. However, when the peak of
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FIG. 3 (color online). Parallel DQD with U1 � 0:5, �1 �
0:05, �2 � 0:02, and "2 � 0. (a) Hybridization ��!� vanishes
as !2 at ! � 0. (b)–(d) Dot-1 spectral density A11�!� and
(e) effective moment �2

1�T�, for various "1. For "1 � �U1=2,
no Kondo effect occurs: A11�0� � 0 in (b) and �2

1�0� � 1=4 [�
and � in (e)]. This LM phase is separated by a QCP at "1 �
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�2

1�0� � 1=6 [� in (e)], from the SC phase [(d), � and 4 in (e)]
in which A11 vanishes at ! � 0 and peaks at some !> 0.
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��!� approaches ! � 0, TK is enhanced and the Kondo
peak splits [Fig. 4(g)]. By contrast, when the zero of ��!�
approaches the Fermi energy, the Kondo temperature de-
creases, and if !0 is tuned to zero, pseudogap behavior is
recovered with complete suppression of the Kondo peak
[Fig. 4(i)].

In summary, we have shown that DQD systems with one
of the dots in the Kondo regime can be tailored experimen-
tally to explore the effects of a nonconstant DOS on the
many-body ground-state properties. In setups where the
Kondo dot is decoupled from the reservoirs, the Kondo
resonance on that dot undergoes zero-field splitting for
large interdot coupling. This can be understood as the
coherent interaction between the many-body Kondo state
and a single-particle resonance in the second dot. Although
the Kondo peak in the spectral density at the Fermi energy
is suppressed, the Kondo singlet state is robust, and the
localized spin is completely screened at low temperatures.
In this regime, the system also passes through a tempera-
ture window of diamagnetic behavior, similar to that seen
in narrow-band systems.

For weak interdot couplings, the Kondo state is sup-
pressed by the presence of a pseudogap in the effective
DOS, and a quantum phase transition takes place between
local-moment and Kondo-screened phases. A quantum-
critical point on the boundary between these phases can
be reached by appropriate tuning of the experimental pa-
rameters. Thus, DQD systems provide a rare example of a
controlled setting in which to investigate quantum-critical
behavior in a strongly correlated system.
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